Inhibition of Golgi alpha-mannosidase II (GMII), which acts late in the N-glycan processing pathway, provides a route to blocking cancer-induced changes in cell surface oligosaccharide structures. To probe the substrate requirements of GMII, oligosaccharides were synthesized that contained an alpha(1,3)- or alpha(1,6)-linked 1-thiomannoside. Surprisingly, these oligosaccharides were not observed in X-ray crystal structures of native Drosophila GMII (dGMII). However, a mutant enzyme in which the catalytic nucleophilic aspartate was changed to alanine (D204A) allowed visualization of soaked oligosaccharides and led to the identification of the binding site for the alpha(1,3)-linked mannoside of the natural substrate. These studies also indicate that the conformational change of the bound mannoside to a high-energy B 2,5 conformation is facilitated by steric hindrance from, and the formation of strong hydrogen bonds to, Asp204. The observation that 1-thio-linked mannosides are not well tolerated by the catalytic site of dGMII led to the synthesis of a pentasaccharide containing the alpha(1,6)-linked Man of the natural substrate and the beta(1,2)-linked GlcNAc moiety proposed to be accommodated by the extended binding site of the enzyme. A cocrystal structure of this compound with the D204A enzyme revealed the molecular interactions with the beta(1,2)-linked GlcNAc. The structure is consistent with the approximately 80-fold preference of dGMII for the cleavage of substrates containing a nonreducing beta(1,2)-linked GlcNAc. By contrast, the lysosomal mannosidase lacks an equivalent GlcNAc binding site and kinetic analysis indicates oligomannoside substrates without non-reducing-terminal GlcNAc modifications are preferred, suggesting that selective inhibitors for GMII could exploit the additional binding specificity of the GlcNAc binding site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982601PMC
http://dx.doi.org/10.1021/ja711248yDOI Listing

Publication Analysis

Top Keywords

binding site
16
beta12-linked glcnac
12
golgi alpha-mannosidase
8
natural substrate
8
glcnac binding
8
glcnac
6
binding
5
site
5
probing substrate
4
substrate specificity
4

Similar Publications

Genetic characterization of diagnostic epitopes of cardiac troponin I in African rhinoceros.

J Vet Diagn Invest

December 2024

Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, Onderstepoort, South Africa.

African rhinoceros undergo chemical immobilization and prolonged transport during translocations for conservation purposes and, hence, experience several pathophysiologic changes, including skeletal muscle injury. Potential concurrent myocardial injury has not been investigated due to a lack of validated immunoassays. We aimed to use inferred cardiac troponin I (cTnI) amino acid sequences of southern white () and southern-central black () rhinoceros to assess the potential usefulness of several commercial cTnI immunoassays for detecting cTnI in African rhinoceros.

View Article and Find Full Text PDF

The ultrahigh-sensitive detection of HS is reported using a novel dual-ligand metal-organic framework (MOF) electrochemiluminescence (ECL) sensor. By combining tetrakis(4-carboxyphenyl) porphyrin (TCPP) and 1,3,6,8-tetrakis(4-carboxyphenyl) pyrene (TBAPy) as ligands and employing zirconium as the metal source, a spindle-shaped Zr-PyTCPPMOF was successfully designed and synthesized. Notably, the multiple nitrogen structures of porphyrin provided abundant binding sites for sulfur (S), further enhancing the ECL signal of Zr-PyTCPPMOF.

View Article and Find Full Text PDF

Gram-negative bacteria-driven increase of cytosolic phospholipase A2 leads to activation of Kupffer cells.

Cell Mol Life Sci

December 2024

Department of Internal Medicine and Gastroenterology, Internistisches Klinikum München Süd, Am Isarkanal 36, Munich, Germany.

Bacterial infections are prevalent and the major cause of morbidity and mortality in cirrhosis. Activation of human Kupffer cells (HKCs) from livers is essential for human innate immunity. Cytosolic phospholipase A2 (cPLA2) plays a crucial role in the control and balance of innate immune and inflammatory reactions.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) poses significant treatment challenges due to its high metastasis, heterogeneity, and poor biomarker expression. The N-terminus of an octapeptide NAPVSIPQ () was covalently coupled to a carboxylic acid derivative of Ru(2,2'-bipy) () to synthesize an N-stapled short peptide-Rubpy conjugate (). This photosensitizer (PS) was utilized to treat TNBC through microtubule (MT) targeted chemotherapy and photodynamic therapy (PDT).

View Article and Find Full Text PDF

The treatment of stress-related disorders such as anxiety and depression is still challenging. One potential therapeutical option are neurosteroids. Their synthesis is promoted by ligands of the mitochondrial translocator protein 18 kDa (TSPO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!