Synthesis and cytotoxic activities of usnic acid derivatives.

Bioorg Med Chem

EA 4090 Substances lichéniques et photoprotection, UFR des Sciences Pharmaceutiques et Biologiques, Université de Rennes 1, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France.

Published: July 2008

Nine usnic acid-amine conjugates were evaluated on murine and human cancer cell lines. The polyamine derivatives showed significant cytotoxicity in L1210 cells. Their activities appeared to be independent of the polyamine transport system (PTS). Indeed, their activities were similar in chinese hamster ovary (CHO) and in the PTS deficient CHO-MG cells. In addition, alpha-difluoromethylornithine, an ornithine decarboxylase inhibitor known to indirectly enhance the activity of the PTS and consequently increase the cytotoxicity of cytotoxic drugs entering cells via the PTS, had no effect on the activity of the polyamine derivatives. The more active derivative (1,8-diaminooctane derivative) displayed similar activities on all cancer cell lines studied and induced apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2008.05.069DOI Listing

Publication Analysis

Top Keywords

cancer cell
8
cell lines
8
polyamine derivatives
8
synthesis cytotoxic
4
activities
4
cytotoxic activities
4
activities usnic
4
usnic acid
4
acid derivatives
4
derivatives usnic
4

Similar Publications

Introduction: Antibody-drug conjugates (ADCs) are a rapidly evolving class of anti-cancer drugs with a significant impact on management of hematological malignancies including diffuse large B-cell lymphoma (DLBCL). ADCs combine a cytotoxic drug (a.k.

View Article and Find Full Text PDF

Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.

View Article and Find Full Text PDF

Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data.

Funct Integr Genomics

January 2025

Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.

Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.

View Article and Find Full Text PDF

Limited treatment options are available for bladder cancer (BCa) resulting in extremely high mortality rates. Cyclovirobuxine D (CVB-D), a naturally alkaloid, reportedly exhibits notable antitumor activity against diverse tumor types. However, its impact on CVB-D on BCa and its precise molecular targets remain unexplored.

View Article and Find Full Text PDF

NFKB1 as a key player in Tumor biology: from mechanisms to therapeutic implications.

Cell Biol Toxicol

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China.

NFKB1, a core transcription factor critical in various biological process (BP), is increasingly studied for its role in tumors. This research combines literature reviews, meta-analyses, and bioinformatics to systematically explore NFKB1's involvement in tumor initiation and progression. A unique focus is placed on the NFKB1-94 ATTG promoter polymorphism, highlighting its association with cancer risk across diverse genetic models and ethnic groups, alongside comprehensive analysis of pan-cancer expression patterns and drug sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!