Alcanivorax borkumensis strain SK2 is a cosmopolitan hydrocarbonoclastic marine bacterium, with a specialized metabolism adapted to the degradation of petroleum oil hydrocarbons. Transposon mutagenesis was used for functional genome analysis of Alcanivorax SK2 to reveal the genetic basis of other environmentally relevant phenotypes, such as biofilm formation, adaptation to UV exposure, and to growth at either low temperature or high salinity. Forty-eight relevant transposon mutants deficient in any one of these environmentally responsive functions were isolated, and the corresponding genes interrupted by the mini-Tn5 element were sequenced using inverse PCR. Several cross connections between different phenotypes (e.g. biofilm and UV stress; biofilm and UV and osmoadaptation) on signal transduction level have been revealed, pointing at complex and tightly controlled cellular interactions involving oxygen as a primary messenger and cyclic-di-GMP as a secondary messenger required for Alcanivorax responses to environmental stresses. These results provide insights into bacterial function in a complex marine environment.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.2008.01222.xDOI Listing

Publication Analysis

Top Keywords

alcanivorax borkumensis
8
phenotypes biofilm
8
niche-specificity factors
4
factors marine
4
marine oil-degrading
4
oil-degrading bacterium
4
alcanivorax
4
bacterium alcanivorax
4
borkumensis sk2
4
sk2 alcanivorax
4

Similar Publications

The development of multidrug resistance by pathogenic bacteria and yeast is a significant medical problem that needs to be addressed. One possible answer could be the combined use of antibiotics and silver nanoparticles, which have different mechanisms of antimicrobial action. In the same way, these nanoparticles can be combined with antifungal agents.

View Article and Find Full Text PDF

Microbial enhanced oil recovery (EOR) has become the focus of oilfield research due to its low cost, environmental friendliness and sustainability. The degradation and EOR capacity of A. borkumensis through the production of bio-enzyme and bio-surfactant were first investigated in this study.

View Article and Find Full Text PDF

High-quality physiology of SK2 producing glycolipids enables efficient stirred-tank bioreactor cultivation.

Front Bioeng Biotechnol

November 2023

iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.

Glycine-glucolipid, a glycolipid, is natively synthesized by the marine bacterium SK2. is a Gram-negative, non-motile, aerobic, halophilic, rod-shaped γ-proteobacterium, classified as an obligate hydrocarbonoclastic bacterium. Naturally, this bacterium exists in low cell numbers in unpolluted marine environments, but during oil spills, the cell number significantly increases and can account for up to 90% of the microbial community responsible for oil degradation.

View Article and Find Full Text PDF

A novel biosurfactant was discovered to be synthesized by the marine bacterium Alcanivorax borkumensis in 1992. This bacterium is abundant in marine environments affected by oil spills, where it helps to degrade alkanes and, under such conditions, produces a glycine-glucolipid biosurfactant. The biosurfactant enhances the bacterium's attachment to oil droplets and facilitates the uptake of hydrocarbons.

View Article and Find Full Text PDF

biofilms enhance oil degradation by interfacial tubulation.

Science

August 2023

Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.

During the consumption of alkanes, will form a biofilm around an oil droplet, but the role this plays during degradation remains unclear. We identified a shift in biofilm morphology that depends on adaptation to oil consumption: Longer exposure leads to the appearance of dendritic biofilms optimized for oil consumption effected through tubulation of the interface. In situ microfluidic tracking enabled us to correlate tubulation to localized defects in the interfacial cell ordering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!