Lung cells are exposed to cyclic stretch during normal respiration and during positive pressure mechanical ventilation administered to support gas exchange. Dystroglycan is a ubiquitously expressed matrix receptor that is required for normal basement membrane formation during embryogenesis and for maintaining the function of skeletal muscle myocytes and neurons where it links cells to matrix. We previously reported that equibiaxial stretch of primary alveolar epithelial cells activated the MAP kinase pathway ERK1/2 through a mechanism that required an interaction between dystroglycan and matrix. We determined whether this mechanism of mechanotransduction activates other signaling cascades in lung epithelium. Exposure of rat epithelial alveolar type II cells (AEC) to cyclic mechanical stretch resulted in activation of 5' AMP-activated protein kinase (AMPK). This response was not affected by pretreatment of AEC with the ERK inhibitor PD98059 but was inhibited by knockdown in dystroglycan expression. Moreover, production of reactive oxygen species was enhanced in mechanically stimulated AEC in which dystroglycan was knocked down. This enhancement was reversed by treatment of AEC with an AMPK activator. Activation of AMPK was also observed in lung homogenates from mice after 15 minutes of noninjurious mechanical ventilation. Furthermore, knockdown of dystroglycan in the lungs of mice using an adenovirus encoding a dystroglycan shRNA prevented the stretch-induced activation of AMPK. These results suggest that exposure to cyclic stretch activates the metabolic sensing pathway AMPK in the lung epithelium and supports a novel role for dystroglycan in this mechanotransduction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586043 | PMC |
http://dx.doi.org/10.1165/rcmb.2007-0432OC | DOI Listing |
Int J Mol Sci
January 2025
Clinical Division of General Anaesthesia and Intensive Care Medicine, Department of Anesthesia, Genera Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria.
Drug development for human disease relies on preclinical model systems such as human cell cultures and animal experiments before therapeutic treatments can ultimately be tested on humans in clinical studies. We here describe the generation of a novel human cell line (HLMVEC/SVTERT289) that we generated by transfection of microvascular endothelial cells from healthy donor lung tissue with the catalytic domain of telomerase and the SV40 large T/small t-antigen. These cells exhibited satisfactory growth characteristics and largely maintained their native characteristics, including morphology, cell surface marker expression, angiogenic potential and the protein composition of secreted extracellular vesicles.
View Article and Find Full Text PDFNat Mater
January 2025
Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal.
Directed collective cell migration is essential for morphogenesis, and chemical, electrical, mechanical and topological features have been shown to guide cell migration in vitro. Here we provide in vivo evidence showing that endogenous electric fields drive the directed collective cell migration of an embryonic stem cell population-the cephalic neural crest of Xenopus laevis. We demonstrate that the voltage-sensitive phosphatase 1 is a key component of the molecular mechanism, enabling neural crest cells to specifically transduce electric fields into a directional cue in vivo.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Second Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece.
Atrial fibrosis is a hallmark of atrial cardiomyopathy and plays a pivotal role in the pathogenesis of atrial fibrillation (AF), contributing to its onset and progression. The mechanisms underlying atrial fibrosis are multifaceted, involving stretch-induced fibroblast activation, oxidative stress, inflammation, and coagulation pathways. Variations in fibrosis types-reactive and replacement fibrosis-are influenced by patient-specific factors such as age, sex, and comorbidities, complicating therapeutic approaches.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
Adipose tissue in vivo is physiologically exposed to compound mechanical loading due to bodyweight bearing, posture, and motion. The capability of adipocytes to sense and respond to mechanical loading milieus to influence metabolic functions may provide a new insight into obesity and metabolic diseases such as type 2 diabetes (T2D). Here, we evidenced physiological mechanical loading control of adipocyte insulin signaling cascades.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
Insulin-like growth factor 2 (IGF2) is a mitogenic peptide hormone expressed by various tissues. Although it is three times more abundant in serum than IGF1, its physiological and pathological roles are yet to be fully understood. Previous transcriptome sequencing studies have shown that IGF2 expression is increased in hypertrophic scar (HS); however, its role in HS formation and the underlying mechanism remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!