Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2427001 | PMC |
PeerJ
January 2025
Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States of America.
Matrix population models are essential tools in conservation biology, offering key metrics to guide species management and conservation planning. However, the development of these models is often limited by insufficient life history data, particularly for non-charismatic species. This study addresses this gap by using life history data from FishBase and the FishLife R package, complemented by size-dependent natural mortality estimates, to parameterize age-structured matrix population models applicable to most fish species.
View Article and Find Full Text PDFBMC Ecol Evol
January 2025
Leibniz Institute on Aging, Jena, Germany.
Maximizing the life-long reproductive output would lead to the prediction that short-lived and fast aging species would undergo no - if any - reproductive senescence. Turquoise killifish (Nothobranchius furzeri) are naturally short-lived teleosts, and undergo extensive somatic aging, characterized by molecular, cellular, and organ dysfunction following the onset of sexual maturation. Here, we tested whether naturally short-lived and fast aging male turquoise killifish maximize reproduction and display minimal - if any, reproductive senescence.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.
Introgressive hybridization, the interbreeding and gene flow between different species, has become increasingly common in the Anthropocene, where human-induced ecological changes and the introduction of captively reared individuals are increasing secondary contact among closely related species, leading to gene flow between wild and domesticated lineages. As a result, domesticated-wild hybridization may potentially affect individual fitness, leading to maladaptive effects such as shifts in behavior or life-history decisions (e.g.
View Article and Find Full Text PDFEcol Lett
December 2024
Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA.
Climate change is shifting the timing of organismal life-history events. Although consequential food-web mismatches can emerge if predators and prey shift at different rates, research on phenological shifts has traditionally focused on single trophic levels. Here, we analysed >2000 long-term, monthly time series of phytoplankton, zooplankton, and fish abundance or biomass for the San Francisco, Chesapeake, and Massachusetts bays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!