2-(2,4-Difluoro-phenyl)-4,5,6,7-tetrafluoro-1H-isoindole-1,3(2H)-dione (CPS49) is a member of a recently identified class of redox-reactive thalidomide analogs that show selective killing of leukemic cells by increasing intracellular reactive oxygen species (ROS) and targeting multiple transcriptional pathways. Flavopiridol is a semisynthetic flavonoid that inhibits cyclin-dependent kinases and also shows selective lethality against leukemic cells. The purpose of this study is to explore the efficacy and mechanism of action of the combinatorial use of the redox-reactive thalidomide CPS49 and the cyclin-dependent kinase inhibitor flavopiridol as a selective antileukemic therapeutic strategy. In combination, CPS49 and flavopiridol were found to induce selective cytotoxicity associated with mitochondrial dysfunction and elevations of ROS in leukemic cells ranging from additive to synergistic activity at low micromolar concentrations. Highest synergy was observed at the level of ROS generation with a strong correlation between cell-specific cytotoxicity and reciprocal coupling of drug-induced ROS elevation with glutathione depletion. Examination of the transcriptional targeting of CPS49 and flavopiridol combinations reveals that the drugs act in concert to initiate a cell specific transcriptional program that manipulates nuclear factor-kappaB (NF-kappaB), E2F-1, and p73 activity to promote enhanced mitochondrial instability by simultaneously elevating the expression of the proapoptotic factors BAX, BAD, p73, and PUMA while depressing expression of the antiapoptotic genes MCL1, XIAP, BCL-xL, SURVIVIN, and MDM2. The coadministration of CPS49 and flavopiridol acts through coordinate targeting of transcriptional pathways that enforce selective mitochondrial dysfunction and ROS elevation and is therefore a promising new therapeutic combination that warrants further preclinical exploration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778846 | PMC |
http://dx.doi.org/10.1124/mol.107.040808 | DOI Listing |
Curr Pharm Biotechnol
January 2019
Laboratorio de Oncologia Molecular y Nuevos Blancos Terapeuticos, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina.
Due to some inconsistencies in the figures provided by the first author that have come to light, and after a thorough investigation we would like to retract our paper: "Low doses of CPS49 and flavopiridol combination as potential treatment for advanced prostate cancer. By: Zalazar F, De Luca P, Gardner K, Figg WD, Meiss R, Spallanzani RG, Vallecorsa P, Elguero B, Cotignola J, Vazquez E, De Siervi A. Curr.
View Article and Find Full Text PDFCurr Pharm Biotechnol
December 2015
Laboratorio de Oncologia Molecular y Nuevos Blancos Terapeuticos (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires, (C1428ADN), Argentina.
Prostate cancer (PCa) still ranks as the second most frequently diagnosed cancer and metastatic castration resistant prostate cancer (CRPC) is a foremost cause of men cancer death around the world. The aim of this work was to investigate the selectivity and efficacy of new drug combinations for CRPC. We combined three compounds: paclitaxel (PTX: taxane that inhibits microtubule polymerization); 2-(2,4-Difluoro-phenyl)-4,5,6,7-tetrafluoro-1H-isoindole- 1,3(2H)-dione (CPS49; redox-reactive thalidomide analog with anti-angiogenic properties) and flavopiridol (flavo: semisynthetic flavonoid that inhibits cyclin dependent kinases).
View Article and Find Full Text PDFMol Pharmacol
September 2008
Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD 20892-5065, USA.
2-(2,4-Difluoro-phenyl)-4,5,6,7-tetrafluoro-1H-isoindole-1,3(2H)-dione (CPS49) is a member of a recently identified class of redox-reactive thalidomide analogs that show selective killing of leukemic cells by increasing intracellular reactive oxygen species (ROS) and targeting multiple transcriptional pathways. Flavopiridol is a semisynthetic flavonoid that inhibits cyclin-dependent kinases and also shows selective lethality against leukemic cells. The purpose of this study is to explore the efficacy and mechanism of action of the combinatorial use of the redox-reactive thalidomide CPS49 and the cyclin-dependent kinase inhibitor flavopiridol as a selective antileukemic therapeutic strategy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!