Ultrasound-assisted extraction (UAE) has been widely applied in the extraction of a variety of biologically active compounds including phenolic compounds. However, there is an insufficiency of information on simultaneous extraction of these compounds in this area. In the present study, seven phenolic compounds of two families including cinnamic acids (caffeic, p-coumaric, ferulic, sinapic acid), and benzoic acids (protocatechuic, p-hydroxybenzoic, vanillic acid) from citrus (Citrus unshiuMarc) peels were evaluated by UAE. The effects of ultrasonic variables including extraction time, temperature, and ultrasonic power on the yields of seven phenolic acids was investigated. Results showed that the yields of phenolic compounds increased with both ultrasonic time and temperature increased, whereas the opposite occurred with increasing time at higher temperature to some certain. In the case of 40 degrees C, the decrease in the yields of some phenolic compounds was observed with increased time, whereas those of other compounds did not significantly declined. Ultrasonic power has a positive effect on the yields of phenolic acids under study. Among all ultrasound variables, temperature is the most sensitive on stability of phenolic compounds. Moreover, when phenolic compounds from citrus peel extracts were subjected to ultrasound process, the benzoic acids were more stable than the cinnamic acids. Meanwhile, the optimal ultrasound condition was different one compound from another. These were partly attributed to both the differently chemical structures of phenolic acids and the combination effects of ultrasonic variables.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultsonch.2008.04.012 | DOI Listing |
Med Oncol
January 2025
Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China.
Temozolomide (TMZ)-based chemotherapy is a primary regimen for melanoma patients who have failed targeted therapy or immunotherapy. However, the low response rate of TMZ-based chemotherapy challenges the patients' prognosis. BRAF mutation is the most frequently mutated site in melanoma.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pesticide Chemistry, National Research Centre, Dokki, 12622, Giza, Egypt.
Chemoprevention is one of the accessible strategies for preventing, delaying or reversing cancer processing utilizing chemical intervention of carcinogenesis. NAD(P)H quinone oxidoreductase 1 (NQO1) is a xenobiotic metabolizing cytosolic enzyme/protein with important functional properties towards oxidation stress, supporting its ability in detoxification/chemoprotective role. A set of 3,5-diylidene-4-piperidones (as curcumin mimics) bearing alkyl sulfonyl group were synthesized with potential NQO1 induction properties.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India. Electronic address:
This study determined the anthocyanin and phenolic profile of Syzygium cumini bioactive compounds, including anthocyanins and other flavonoids, alongside diverse phenolic compounds. The study optimized a green extraction technique (ultrasound-assisted enzymatic extraction (UAEE)) to obtain anthocyanin-rich extract from the fruit pulp of S. cumini using the pectinase enzyme.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Food Engineering, Faculty of Engineering, Cukurova University, 01330 Adana, Türkiye. Electronic address:
Key odorants of juices of pomegranate fruits of Hicaz variety obtained from different juice production stages (fresh: FrPJ, pasteurized: PPJ, filtered: FiPJ, and concentrated: CPJ) were examined. Processing significantly impacted the volatile compounds. The FrPJ and PPJ samples had higher concentrations of aroma compounds than the FiPJ and CPJ samples.
View Article and Find Full Text PDFFood Chem
January 2025
School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
This study evaluated the effects of malic acid vacuum microwave preconditioning (MVMP) on lotus root (LR) by examining its moisture content, dielectric properties, microstructure, and starch characteristics, including modifications in starch structure and composition. Dielectric properties and LF-NMR indicated that the dielectric constant (ε') was closely associated to moisture content and state, while changes in water migration depended on microwave power and the dielectric loss factor (ε″). Increased microwave power and malic acid concentration resulted in microstructural damage (indentation and breakage of starch granules) and starch hydrolysis into smaller particles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!