Despite recent advances in cancer therapy, many malignant tumors still lack effective treatment and the prognosis is very poor. Paclitaxel is a potential anticancer drug, but its use is limited by the facts that paclitaxel is a P-gp substrate and its aqueous solubility is poor. In this study, three-step tumor targeting of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin-biotin technology was evaluated in vitro as a way of enhancing delivery of paclitaxel. Paclitaxel was incorporated both in biotinylated (BP) and non-biotinylated (LP) PEG-PLA nanoparticles by the interfacial deposition method. Small (mean size approximately 110 nm), spherical and slightly negatively charged (-10 mV) BP and LP nanoparticles achieving over 90% paclitaxel incorporation were obtained. The successful biotinylation of nanoparticles was confirmed in a novel streptavidin assay. BP nanoparticles were targeted in vitro to brain tumor (glioma) cells (BT4C) by three-step avidin-biotin technology using transferrin as the targeting ligand. The three-step targeting procedure increased the anti-tumoral activity of paclitaxel when compared to the commercial paclitaxel formulation Taxol and non-targeted BP and LP nanoparticles. These results indicate that the efficacy of paclitaxel against tumor cells can be increased by this three-step targeting method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2008.04.018 | DOI Listing |
Biomed Pharmacother
July 2024
Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran. Electronic address:
Therapeutic proteins provided new opportunities for patients and high sales volumes. However, they are formulated for extracellular targets. The lipophilic barrier of the plasma membrane renders the vast array of intracellular targets out of reach.
View Article and Find Full Text PDFJ Control Release
May 2024
Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; Department of Research and Development, Shanghai Tayzen PharmLab Co., Ltd., Shanghai, 201314, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China; Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China. Electronic address:
Challenges for glioma treatment with nanomedicines include physio-anatomical barriers (the blood-brain barrier and blood-brain tumor barrier), low drug loading capacity, and limited circulation time. Here, a red blood cell membrane-coated docetaxel drug nanocrystal (pV-RBCm-NC(DTX)), modified with pHA-VAP (pV) for all-stage targeting of glioma, was designed. The NC(DTX) core exhibited a high drug loading capacity but low in vivo stability, and the RBCm coating significantly enhanced the stability and prolonged in vivo circulation.
View Article and Find Full Text PDFACS Omega
November 2023
Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia.
Photothermal therapy (PTT) mediated at the nanoscale has a unique advantage over currently used cancer treatments, by being spatially highly specific and minimally invasive. Although PTT combats traditional tumor treatment approaches, its clinical implementation has not yet been successful. The reasons for its disadvantage include an insufficient treatment efficiency or low tumor accumulation.
View Article and Find Full Text PDFLangmuir
November 2023
School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
Transferrin-conjugated polymersomes, transferrin-biotin/avidin/biotin-Pluronic F127-poly(lactic acid) (Tf-F127-PLA), were successfully prepared through a biotin-avidin bridging technique to study their ability to inhibit multidrug resistance of cancer cells. Hydrophilic doxorubicin (DOX) was selected as the model drug to be loaded into Tf-F127-PLA polymersomes. DOX loaded in Tf-F127-PLA polymersomes was released fast initially, followed by a slow release.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2023
School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom.
Strong-binding host-guest pairings in aqueous media have potential as "supramolecular glues" in biomedical techniques, complementing the widely-used (strept)avidin-biotin combination. We have previously found that squaraine dyes are bound very strongly by tetralactam macrocycles possessing anthracenyl units as cavity walls. Here we show that replacing the anthracenes with pentacyclic 5,7,12,14-tetrahydro-5,7,12,14-tetraoxapentacene (TOP) units generates receptors which bind squaraines with increased affinities (around K =10 m ) and improved selectivities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!