AI Article Synopsis

Article Abstract

Objective: The aim of this study was to evaluate the differentiation potential of two populations of muscle-derived cells (CD56- and CD56+) towards chondrogenic phenotype in alginate beads culture and to compare the effect of transforming growth factor beta 1 (TGFbeta1) on the differentiation process in these populations.

Methods: Muscle CD56- and CD56+ cells were cultured in alginate beads, in a chondrogenic medium, containing or not TGFbeta1 (10 ng/ml). Cultures were maintained for 3, 7, 14 or 21 days in a humidified culture incubator. At harvest, one culture of each set was fixed for alcian blue staining and aggrecan detection. The steady-state level of matrix macromolecules mRNA was assessed by real-time polymerase chain reaction (PCR). Protein detection was performed by western-blot analysis. The binding activity of nuclear extracts to Cbfa1 DNA sequence was also evaluated by electrophoretic mobility shift assays (EMSA).

Results: Chondrogenic differentiation of both CD56+ and CD56- muscle-derived cells was improved in alginate scaffold, even without growth factor, as suggested by increased chondrogenesis markers expression during the culture. Furthermore, TGFbeta1 enhanced the differentiation process and allowed to maintain a high expression of markers of mature chondrocytes. Of importance, the combination of alginate and TGFbeta1 treatment resulted in a further down-regulation of collagen type I and type X, as well as Cbfa1 both expression and binding activity.

Conclusions: Thus, alginate scaffold and chondrogenic medium are sufficient to lead both populations CD56+ and CD56- towards chondrogenic differentiation. Moreover, TGFbeta1 enhances this process and allows to maintain the chondrogenic phenotype by inhibiting terminal differentiation, particularly for CD56- cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joca.2008.04.018DOI Listing

Publication Analysis

Top Keywords

muscle-derived cells
12
chondrogenic phenotype
12
alginate beads
12
differentiation potential
8
phenotype alginate
8
beads culture
8
cd56- cd56+
8
growth factor
8
differentiation process
8
chondrogenic medium
8

Similar Publications

Stem cell therapy for bladder regeneration: A comprehensive systematic review.

Regen Ther

March 2025

Pediatric Urology and Regenerative Medicine Research Center, Gene Cell and Tissue Research Institute Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran.

Tissue engineering has been considered a potential choice for urinary system reconstruction. Here, we aim to a broad spectrum of employed stem cells in bladder regeneration by performing a comprehensive systematic review. In January 2024, we searched Scopus, PubMed, and Embase databases for studies that tried bladder regeneration by tissue engineering using stem cells.

View Article and Find Full Text PDF

Brain-derived neurotropic factor (BDNF) is expressed by skeletal muscle as a myokine. Our previous work showed that the active precursor, proBDNF, is the predominant form of BDNF expressed in skeletal muscle, and that following skeletal muscle injury, proBDNF levels are significantly increased. However, the function of the muscle-derived proBDNF in injury-induced inflammation has yet to be fully understood.

View Article and Find Full Text PDF

Bone homeostasis encompasses two interrelated aspects: bone remodeling and cartilage metabolism. Disruption of bone homeostasis can lead to the development of metabolic bone diseases such as osteoporosis and osteoarthritis. The maintenance of bone homeostasis is a complex process that does not solely rely on the functions of the bone tissue itself.

View Article and Find Full Text PDF

The purpose of this study is to construct a muscle-specific synthetic promoter library, screen out muscle-specific promoters with high activity, analyze the relationship between element composition and activity of highly active promoters, and provide a theoretical basis for artificial synthesis of promoters. In this study, 19 promoter fragments derived from muscle-specific elements, conserved elements, and viral regulatory sequences were selected and randomLy connected to construct a muscle-specific synthetic promoter library. The luciferase plasmids pCMV-Luc and pSPs-Luc were constructed and transfected into the myoblast cell line C2C12.

View Article and Find Full Text PDF

Culturing fish myogenic cells in vitro holds significant potential to revolutionize aquaculture practices and support sustainable food production. However, advancement in in vitro culture technologies for skeletal muscle-derived myogenic cells have predominantly focused on mammals, with limited studies on fish. Scaffold-based three-dimensional (3D) culture systems for fish myogenic cells remain underexplored, highlighting a critical research gap compared to mammalian systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!