A few researchers have reported on work concerning bioleaching of heavy-metal-contaminated soil using Acidithiobacillus ferrooxidans, since this acidophile is sensitive to dissolved low molecular weight (LMW) organic acids. Iron oxidation by A. ferrooxidans R2 as well as growth on ferrous iron was inhibited by a variety of dissolved LMW organic acids. Growth experiments with ferrous iron as an oxidant showed that the inhibition capability sequence was formic acid>acetic acid>propionic acid>oxalic acid>malic acid>citric acid. The concentrations that R2 might tolerate were formic acid 0.1mmolL(-1) (2mmolkg(-1)soil), acetic and propionic acids 0.4mmolL(-1) (8mmolkg(-1)soil), oxalic acid 2.0mmolL(-1) (40mmolkg(-1)soil), malic acid 20mmolL(-1) (400mmolkg(-1)soil), citric acid 40mmolL(-1) (800mmolkg(-1)soil), respectively. Although R2 was sensitive to organic acids, the concentrations of LMW organic acids in the contaminated soils were rather lower than the tolerable levels. Hence, it is feasible that R2 might be used for bioleaching of soils contaminated with metals or metals coupled with organic compounds because of the higher concentrations of LMW organic acids to which R2 is tolerant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2008.05.005 | DOI Listing |
Langmuir
January 2025
Department of Chemistry, Bharathiar University, Coimbatore 641 046, India.
Developing nonprecious metal-based electrocatalysts with exceptional activity and durability for water electrolysis remains a significant challenge. Herein, we report a highly efficient bifunctional electrocatalyst composed of sulfur-doped vanadium metal-organic frameworks (S@V-MOF) integrated with multiwalled carbon nanotubes (MWCNTs) to promote the synergistic effect between S@V-MOF and MWCNTs and modulate the electronic structure of the catalyst, which eventually enhanced its electrocatalytic performance. The S@V-MOF/MWCNT catalyst loaded at the Ni foam electrode exhibits remarkable activity for both the hydrogen evolution reaction (HER) in acidic media and oxygen evolution reaction (OER) in alkaline media, requiring overpotentials of 48 and 227 mV, respectively, to reach a current density of 10 mA cm.
View Article and Find Full Text PDFBioresour Bioprocess
January 2025
Biotechnology Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, Móstoles, Madrid, 28935, Spain.
This research investigated the acidogenic fermentation (AF) of sugar cane molasses in an up-flow anaerobic sludge blanket (UASB) reactor for the production of carboxylates. The first step was to assess the optimum process temperature (25, 35 or 55 ºC) using two different granular inocula, one from a brewery company (BGS) and other from a paper plant company (PGS). These experiments determined that the most suitable temperature for carboxylates production was 25 ºC, obtaining higher bioconversions (27.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
February 2025
Department Chemie, Ludwig-Maximilians Universität, Butenandtstrasse 5-13 (Haus D), D-81377 München, Germany.
Acyl fluorides and acyl cations represent typical reactive intermediates in organic reactions, such as Friedel-Crafts acylation. However, the comparatively stable phenyl-substituted compounds have not been fully characterized yet, offering a promising backbone. Attempts to isolate the benzoacylium cation have only been carried out starting from the acyl chloride with weaker chloride-based Lewis acids.
View Article and Find Full Text PDFToxics
January 2025
School of Computer Science and Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430078, China.
Anaerobic digestion (AD) technology offers significant advantages in addressing environmental issues arising from the intensification of livestock production since it enables waste reduction and energy recovery. However, the molecular composition of dissolved organic matter (DOM) and its linkages to microbial biodiversity during the industrial-scale AD process of chicken manure (CM) remains unclear. In this study, the chemical structure of CM digestate-derived DOM was characterized by using multi-spectroscopic techniques and ultrahigh-resolution mass spectrometry, and the microbial composition was detected by using 16S rRNA gene sequencing.
View Article and Find Full Text PDFToxics
December 2024
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
Bioremediation is widely recognized as a promising and efficient approach for the elimination of Cd from contaminated paddy soils. However, the Cd removal efficacy achieved through this method remains unsatisfactory and is accompanied by a marginally higher cost. Cysteine has the potential to improve the bioleaching efficiency of Cd from soils and decrease the use cost since it is green, acidic and has a high Cd affinity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!