Differential striatal levels of TNF-alpha, NFkappaB p65 subunit and dopamine with chronic typical and atypical neuroleptic treatment: role in orofacial dyskinesia.

Prog Neuropsychopharmacol Biol Psychiatry

Centre with Potential for Excellence in Biomedical Sciences (CPEBS), Panjab University, Chandigarh 160014, India.

Published: August 2008

Long term use of typical neuroleptics such as haloperidol may be limited by unwanted motor side effects like tardive dyskinesia characterized by repetitive involuntary movements, involving the mouth, face and trunk. Atypical neuroleptics, such as clozapine and risperidone are devoid of these side effects. However the precise mechanisms of the neuronal toxicity induced by haloperidol are poorly understood. It is possible that typical and atypical antipsychotic differently affects neuronal survival and death and that these effects considerably contribute to the differences in the development of TD. The aim of the present study is to investigate the role of TNF-alpha and NFkappaB on the toxicity induced by chronic haloperidol administration in an animal model of tardive dyskinesia. Rats were treated for 21 days with: haloperidol (5 mg/kg), clozapine (5 and 10 mg/kg), risperidone (5 mg/kg) or saline. Orofacial dyskinetic movements and total locomotor activity was evaluated. Striatal levels of dopamine were measure by HPLC/ED whereas striatal levels of TNF-alpha and NFkappaB p65 subunit were measured by ELISA technique. Haloperidol increased orofacial dyskinetic movements and total locomotor activity (on day 22) (P

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pnpbp.2008.05.003DOI Listing

Publication Analysis

Top Keywords

striatal levels
12
tnf-alpha nfkappab
12
levels tnf-alpha
8
nfkappab p65
8
p65 subunit
8
typical atypical
8
side effects
8
tardive dyskinesia
8
toxicity induced
8
orofacial dyskinetic
8

Similar Publications

Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans.

View Article and Find Full Text PDF

The substantia nigra pars compacta (SNc), one of the main dopaminergic nuclei of the brain, exerts a regulatory function on the basal ganglia circuitry via the nigro-striatal pathway but its possible dopaminergic innervation of the thalamus has been only investigated in non-human primates. The impossibility of tract-tracing studies in humans has boosted advanced MRI techniques and multi-shell high-angular resolution diffusion MRI (MS-HARDI) has promised to shed more light on the structural connectivity of subcortical structures. Here, we estimated the possible dopaminergic innervation of the human thalamus via an MS-HARDI tractography of the SNc in healthy human young adults.

View Article and Find Full Text PDF

Neuroimaging stratification reveals the striatal vulnerability to stress as a risk for schizophrenia.

Transl Psychiatry

January 2025

National Clinical Research Center for Aging and Medicine at Huashan Hospital, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, PR China.

The striatum, a core brain structure relevant for schizophrenia, exhibits heterogeneous volumetric changes in this illness. Due to this heterogeneity, its role in the risk of developing schizophrenia following exposure to environmental stress remains poorly understood. Using the putamen (a subnucleus of the striatum) as an indicator for convergent genetic risk of schizophrenia, 63 unaffected first-degree relatives of patients (22.

View Article and Find Full Text PDF

Degeneration of midbrain nigrostriatal dopaminergic neurons is a pathological hallmark of Parkinson's disease (PD). Peripheral delivery of a compound(s) to arrest or slow this dopaminergic degeneration is a key therapeutic goal. Pan-inhibitors of histone deacetylase (HDAC) enzymes, key epigenetic regulators, have shown therapeutic promise in PD models.

View Article and Find Full Text PDF

Background: Pediatric growth hormone deficiency (GHD) is a disease resulting from the impaired growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis, but the effects of GHD on children's behavior and brain microstructural structure alterations have not yet been fully clarified. We aimed to investigate the quantitative profiles of gray matter and white matter in pediatric GHD using synthetic magnetic resonance imaging (MRI).

Methods: The data of 50 children with GHD and 50 typically developing (TD) children were prospectively collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!