Expression of genes in the gapA operon encoding five enzymes for triose phosphate interconversion in Bacillus subtilis is negatively regulated by the Central glycolytic genes Regulator (CggR). CggR belongs to the large SorC/DeoR family of prokaryotic transcriptional regulators, characterized by an N-terminal DNA-binding domain and a large C-terminal effector-binding domain. When no glucose is present in growth media, CggR binds to its target DNA sequence and blocks the transcription of genes in the gapA operon. In the presence of glucose, binding of the known effector molecule fructose-1,6-bisphosphate abolishes this interaction. We have identified dihydroxyacetone phosphate, glucose-6-phosphate and fructose-6-phosphate as additional CggR ligands that can bind to the effector-binding site. Crystal structures of C-CggR, the C-terminal effector-binding domain of CggR, both unliganded as well as in complex with the four ligands at resolutions between 1.65 and 1.80 A reveal unique ligand-specific structural changes in the binding site that affect the dimer interface. Binding affinities of these ligands were determined by isothermal titration calorimetry. Chemical cross-linking shows that CggR oligomerization is mediated through its effector-binding domain, and that binding of the different ligands differentially affects the distribution of oligomers. Electrophoretic mobility shift assays (EMSAs) confirmed a destabilizing effect of fructose-1,6-bisphosphate on the CggR/DNA complex, and also showed similar effects for dihydroxyacetone phosphate. Our results suggest that CggR stability and function may be modulated by various effectors in a complex fashion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2764557PMC
http://dx.doi.org/10.1111/j.1365-2958.2008.06318.xDOI Listing

Publication Analysis

Top Keywords

effector-binding domain
16
crystal structures
8
central glycolytic
8
bacillus subtilis
8
structural changes
8
changes binding
8
genes gapa
8
gapa operon
8
c-terminal effector-binding
8
dihydroxyacetone phosphate
8

Similar Publications

A bacterial transcription activator dedicated to the expression of the enzyme catalyzing the first committed step in fatty acid biosynthesis.

Nucleic Acids Res

November 2024

Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.

Acetyl-CoA carboxylase (ACCase) catalyzes the first committed and rate-limiting step of de novo fatty acid synthesis (FAS). Although this step is tightly regulated, regulators that specifically control transcription of the ACCase genes remain elusive. In this study, we identified LysR-type transcriptional regulator AccR as a dedicated activator for the transcription of accS, a gene encoding a multiple-domain ACCase in Shewanella oneidensis.

View Article and Find Full Text PDF

The SorC family is a large group of bacterial transcription regulators involved in controlling carbohydrate catabolism and quorum sensing. SorC proteins consist of a conserved C-terminal effector-binding domain and an N-terminal DNA-binding domain, whose type divides the family into two subfamilies: SorC/DeoR and SorC/CggR. Proteins of the SorC/CggR subfamily are known to regulate the key node of glycolysis-triose phosphate interconversion.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used nanodisc technology and paramagnetic relaxation enhancement to study the structure of a complex involving KRAS and the RAF proteins, discovering that these interactions significantly change how KRAS molecules pair up.
  • * The study reveals that binding RAF alters KRAS dimer arrangements, providing insights into RAF activation and suggesting a potential pathway for targeting these interactions in cancer treatment.
View Article and Find Full Text PDF

In Escherichia coli and Salmonella typhimurium, cysteine biosynthesis requires the products of 20 or more cys genes co-ordinately regulated by CysB. Under conditions of sulphur limitation and in the presence of the inducer, N-acetylserine, CysB binds to cys promoters and activates the transcription of the downstream coding sequences. CysB is a homotetramer, comprising an N-terminal DNA binding domain (DBD) and a C-terminal effector binding domain (EBD).

View Article and Find Full Text PDF

Bioengineering of plant immune receptors has emerged as a key strategy for generating novel disease resistance traits to counteract the expanding threat of plant pathogens to global food security. However, current approaches are limited by rapid evolution of plant pathogens in the field and may lack durability when deployed. Here, we show that the rice nucleotide-binding, leucine-rich repeat (NLR) immune receptor Pik-1 can be engineered to respond to a conserved family of effectors from the multihost blast fungus pathogen .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!