Adenovirus is an efficient vector for expression of transgenes in dividing and nondividing cells. However, very few studies of human embryonic stem cells (hESCs) have utilized adenoviral vectors. We examine here the ability of adenovirus to infect naive hESCs and the differentiated derivatives of multiple hESC lines. We found a striking variation in adenovirus infection rates between lines. The variability in infection rates was positively correlated with the expression of the coxsackievirus and adenovirus receptor, but not that of alpha(nu)-integrin. Adenoviral infection did not interfere with the expression of pluripotency markers, even after passaging. In addition, infection did not affect differentiation of hESC-derived neural precursors in vitro. We also found that green fluorescent protein expression mediated by adenovirus can be a useful marker for tracking hESC in xenografts. We conclude that adenovirus is a practical vector for genetic modification of naive hESC from most, but not all lines, but may be more generally useful for gene transfer into differentiated derivatives of hESC lines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/scd.2008.0127 | DOI Listing |
Adv Exp Med Biol
January 2025
Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
Embryonic mammary gland development unfolds with the specification of bilateral mammary lines, thereafter progressing through placode, bud, and sprout stages before branching morphogenesis. Extensive epithelial-mesenchymal interactions guide morphogenesis from embryogenesis to adulthood. Two distinct mesenchymal tissues are involved, the primary mammary mesenchyme that harbors mammary inductive capacity, and the secondary mesenchyme, the precursor of the adult stroma.
View Article and Find Full Text PDFCell Prolif
January 2025
NewStem LTD, Jerusalem, Israel.
Synthetic lethality is defined as a type of genetic interaction where the combination of two genetic events results in cell death, whereas each of them separately does not. Synthetic lethality can be a useful tool in personalised oncology. MLH1 is a cancer-related gene that has a central role in DNA mismatch-repair and TP53 is the most frequently mutated gene in cancer.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
January 2025
Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
Reactivating the embryonic ζ-globin gene represents a potential therapeutic approach to ameliorate the severe clinical phenotype of α-thalassemia and sickle cell disease. The transcription factor MYB has been extensively proven to be a master regulator of the γ-globin gene, but its role in the regulation of ζ-globin remains incompletely understood. Here, we report a mechanistic study on the derepression of ζ-globin both and .
View Article and Find Full Text PDFStem Cell Res
February 2025
Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research Transformation in Tropical Environment of Hainan Province, Department of Biochemistry and Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan 571199, China; Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 571101, China; Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 571101, China; National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" by the Ministry of Science and Technology of China, Haikou, Hainan 571101, China; Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 571101, China. Electronic address:
Human embryonic stem cell (hESC) lines are vital tools for studying gene function, disease modeling, and therapy. We generated a USP9Y knockout hESC line using CRISPR-Cas9 in the male-derived H1 line. Targeted deletion of the USP9Y gene was confirmed via PCR and sequencing.
View Article and Find Full Text PDFStem Cells
December 2024
Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo.
Pluripotent stem cells provide opportunities for treating injuries and previously incurable diseases. A major concern is the immunogenicity of stem cells and their progeny. Here, we have dissected the molecular mechanisms that allow natural killer (NK) cells to respond to human pluripotent stem cells, investigating a wide selection of activating and inhibitory NK cell receptors and their ligands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!