Trifluomethylated organic compounds often have properties that make them suitable for diverse applications, including materials science, agrochemistry, and pharmaceutical industry. But of all the therapeutic drugs currently available, about 10% of them have a partially fluorinated moiety. Thus, a great deal of attention is being paid to the development of reliable methodologies for trifluoromethylation. Introduction of a trifluoromethyl group into the target molecules mostly relies on either trifluoromethylating reagents or trifluoromethylated synthetic blocks. The chemistry of trifluoromethyl carbanions, nucleophilic trifluoromethylating agents such as the Ruppert-Prakash reagent, and organometallic species has been intensively developed for their important synthetic applications. But the chemistry of beta,beta,beta-trifluoroethyl carbanions (alpha-trifluoromethyl carbanions) and organometallic species has remained undeveloped despite their potential usefulness in organic synthesis. The issue needs to be addressed. This Account outlines successful alkylations and useful synthetic applications of alpha-trifluoromethyl carbanions, such as alpha-substituted beta,beta,beta-trifluoroethyl, alpha-trifluoromethylethenyl, trifluoroacetimidoyl, alpha-trifluoromethyloxiranyl, and related alpha-trifluoromethylated carbanions. The strong electron-withdrawing effect of the alpha-trifluoromethyl group may stabilize the carbanion species electronically. But alpha-trifluoromethyl carbanions and their corresponding organometallic species mostly release fluoride spontaneously to produce difluoroalkenes. This notorious decomposition of alpha-trifluoromethylated carbanions and anionoids has hindered the development of these species for organic synthesis. A well-designed device for the generation, stabilization, and acceleration for alkylation of the alpha-trifluoromethylated carbanions is needed for their synthetic application, as well as stabilization by the electron-withdrawing alpha-substituent. The reported alpha-substituted alpha-trifluoromethyl carbanions can be roughly categorized into three classes based on their structures. The first category, A, is pi-conjugation-stabilized carbanions, which are stabilized by ester, nitro, sulfone, carbonyl, or phenyl groups. alpha-Substituents of these carbanions can delocalize the negative charges on their pi-system with large sigma R electron-withdrawing effects; this prevents accumulation of negative charge on the fluorine atoms. The second category, B, consists of carbanions with sp(3) orbitals either of highly halogenated carbanionsexamples include pentafluoroethyl(trimethyl)fluorosilicate, pentafluoroethyllithium, and alpha,alpha-dichloro-beta,beta,beta-trifluoroethylzinc speciesor of cyclic structures such as oxiranyl- and aziridinyllithiums. Both of these carbanions are also stabilized since they reduce molecular orbital (MO) overlapping of the carbanion orbital to C-F bond orbitals. The third category, C, has carbanions with their anion center at the sp(2) orbital, such as alpha-trifluoromethylated alkenyl carbanions and imidoyl carbanions. These sp(2) orbitals of the carbanion center usually have a small overlap with the C-F bonds of trifluoromethyl groups. The small overlap is able to suppress the E2-type eliminations. alpha-Trifluoromethylated carbanions are, in general, unstable. Their stability is largely affected by factors like hybridization of the orbital that accommodates lone pair electrons, the electronic nature of the alpha-substituents, the degree of covalency in a bond between the carbon and metal, the class of countercation, stabilization by chelation of a metal cation, and so on. The stability, therefore, can be sometimes controlled by tuning these factors adequately so that they can be used for organic synthesis. The chemistry of alpha-trifluoromethylated carbanions for organic synthesis has been progressing steadily. However, the simplest trifluoroethyl and trifluoroacetyl carbanions have never been successfully produced and employed for organic synthesis. Elegant generation and synthetic application of these metal species are one of the most attractive and challenging subjects for active investigation in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ar7002573 | DOI Listing |
Enzyme Microb Technol
January 2025
Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, Senftenberg 01968, Germany. Electronic address:
There is an enormous potential for cell-free protein synthesis (CFPS) systems based on filamentous fungi in view of their simple, fast and mostly inexpensive cultivation with high biomass space-time yields and in view of their catalytic capacity. In 12 of the 22 different filamentous fungi examined, in vitro translation of at least one of the two reporter proteins GFP and firefly luciferase was detected. The lysates showing translation of a reporter protein usually were able to synthesize a functional cell-free expressed unspecific peroxygenase (UPO) from the basidiomycete Cyclocybe (Agrocybe) aegerita.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Molecular Synthesis Center, Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
2-Deoxy-β-glycosides are essential components of natural products and pharmaceuticals; however, the corresponding 2-deoxy-β-glycosidic bonds are challenging to chemically construct. Herein, we describe an efficient catalytic protocol for synthesizing 2-deoxy-β-glycosides via either IPrAuNTf-catalyzed activation of a unique 1,2--positioned C2--propargyl xanthate (OSPX) leaving group or (PhO)PAuNTf-catalyzed activation of a 1,2--C2--alkynylbenzoate (OABz) substituent of the corresponding thioglycosides. These activation processes trigger 1,2-alkyl/arylthio-migration glycosylation, enabling the synthesis of structurally diverse 2-deoxy-β-glycosides under mild reaction conditions.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
Organic redox systems that can undergo oxidative and reductive (ambipolar) electron transfer are elusive yet attractive for applications across synthetic chemistry and energy science. Specifically, the use of ambipolar redox systems in proton-coupled electron transfer (PCET) reactions is largely unexplored but could enable "switchable" reactivity wherein the uptake and release of hydrogen atoms are controlled using a redox stimulus. Here, we describe the synthesis and characterization of an ambipolar functionalized terthiophene (TTH) bearing methyl thioether and phosphine oxide groups that exhibits switchable PCET reactivity.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.
Luminescent chiral metal-organic frameworks (CMOFs) are promising candidates for the enantioselective sensing of important chiral molecules. Herein, we report the synthesis and characterization of Zn and Cd CMOFs based on 1,1'-bi-2-naphthol (BINOL)-derived 3,3',6,6'-tetra(benzoic acids), H-OEt and H-OH. Four CMOFs, -OEt, -OH, -OEt, and -OH, based on these ligands were crystallographically characterized.
View Article and Find Full Text PDFChemSusChem
January 2025
Gebze Technical University, Department of Chemical Engineering, Gebze, 41400, Kocaeli, TURKEY.
This contribution uses a rapid microwave-assisted hydrothermal synthesis method to produce a vanadium-based K1.92Mn0.54V2O5·H2O cathode material (quoted as KMnVOH).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!