An in-frame 3 bp deletion in the torsinA gene resulting in the loss of a glutamate residue at position 302 or 303 (torsinA DeltaE) is the major cause for early-onset torsion dystonia (DYT1). In addition, an 18 bp deletion in the torsinA gene resulting in the loss of residues 323-328 (torsinA Delta323-8) has also been associated with dystonia. Here we report that torsinA DeltaE and torsinA Delta323-8 mutations cause neuronal cell-type-specific mislocalization of torsinA protein to the nuclear envelope without affecting torsinA oligomerization. Furthermore, both dystonia-associated mutations destabilize torsinA protein in dopaminergic cells. We find that wild-type torsinA protein is degraded primarily through the macroautophagy-lysosome pathway. In contrast, torsinA DeltaE and torsinA Delta323-8 mutant proteins are degraded by both the proteasome and macroautophagy-lysosome pathways. Our findings suggest that torsinA mutation-induced premature degradation may contribute to the pathogenesis of dystonia via a loss-of-function mechanism and underscore the importance of both the proteasome and macroautophagy in the clearance of dystonia-associated torsinA mutant proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2574948 | PMC |
http://dx.doi.org/10.1093/hmg/ddn173 | DOI Listing |
Stem Cell Res
December 2024
Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany. Electronic address:
A 3-bp deletion (ΔGAG) in TOR1A is a common cause of early-onset isolated dystonia DYT-TOR1A. The exact disease mechanism remains unknown. Here we describe the generation and characterization of four TorsinA-3xFLAG reporter induced pluripotent cell (iPSC) lines derived from a DYT-TOR1A patient.
View Article and Find Full Text PDFNat Cell Biol
September 2024
Peter O'Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX, USA.
As lifelong interphase cells, neurons face an array of unique challenges. A key challenge is regulating nuclear pore complex (NPC) biogenesis and localization, the mechanisms of which are largely unknown. Here we identify neuronal maturation as a period of strongly upregulated NPC biogenesis.
View Article and Find Full Text PDFJCI Insight
February 2024
Department of Medicine.
Depletion of torsinA from hepatocytes leads to reduced liver triglyceride secretion and marked hepatic steatosis. TorsinA is an atypical ATPase that lacks intrinsic activity unless it is bound to its activator, lamina-associated polypeptide 1 (LAP1) or luminal domain-like LAP1 (LULL1). We previously demonstrated that depletion of LAP1 from hepatocytes has more modest effects on liver triglyceride secretion and steatosis development than depletion of torsinA.
View Article and Find Full Text PDFFront Neurosci
August 2023
Department of Neurology, the Second Hospital of Jilin University, Changchun, China.
DYT- dystonia is a neurological disorder characterized by involuntary muscle contractions and abnormal movements. It is a severe genetic form of dystonia caused by mutations in the gene. TorsinA is a member of the AAA + family of adenosine triphosphatases (ATPases) involved in a variety of cellular functions, including protein folding, lipid metabolism, cytoskeletal organization, and nucleocytoskeletal coupling.
View Article and Find Full Text PDFExp Neurol
September 2023
Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
Dystonia is a neurological movement disorder characterized by repetitive, unintentional movements and disabling postures that result from sustained or intermittent muscle contractions. The basal ganglia and cerebellum have received substantial focus in studying DYT1 dystonia. It remains unclear how cell-specific ∆GAG mutation of torsinA within specific cells of the basal ganglia or cerebellum affects motor performance, somatosensory network connectivity, and microstructure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!