Background: Continuous exposure of the peritoneal membrane to dialysis solutions during long-term dialysis results in mesothelial cell loss, peritoneal membrane damage, and thereby, ultrafiltration (UF) failure, a major determinant of mortality in patients on continuous ambulatory peritoneal dialysis (CAPD). Unfortunately, none of tests available today can predict long-term UF decline. Here, we propose a new tool to predict such a change.
Patients And Methods: Mesothelial cells from 8-hour overnight effluents (1.36% glucose dialysis solution) were harvested, co-stained with cytokeratin (a mesothelial marker) and TUNEL (an apoptotic marker), and were counted using flow cytometry in 48 patients recently started on CAPD. Adequacy of dialysis, UF, nutrition status, dialysate cancer antigen 125 (CA125), and a peritoneal equilibration test (3.86% glucose peritoneal dialysis solution) were simultaneously assessed and were re-evaluated 1 year later.
Results: The numbers of total and apoptotic mesothelial cells were 0.19 +/- 0.19 million and 0.08 +/- 0.12 million cells per bag, respectively. Both numbers correlated well with the levels of end dialysate-to-initial dialysate (D/D(0)) glucose, dialysate-to-plasma (D/P) creatinine, and sodium dipping. Notably, the counts of cells of both types in patients with diabetes or with high or high-average transport were significantly greater than the equivalent counts in nondiabetic patients or those with low or low-average transport. A cut-off of 0.06 million total mesothelial cells per bag had sensitivity of 1 and a specificity of 0.75 in predicting a further decline in D/D(0) glucose and a sensitivity of 0.86 and a specificity of 0.63 to predict a further decline in UF over a 1-year period. In contrast, dialysate CA125 and other measured parameters had low predictive values.
Conclusions: The greater the loss of exfoliated cells, the worse the expected decline in UF. The ability of a count of mesothelial cells to predict a future decline in UF warrants further investigation in clinical practice.
Download full-text PDF |
Source |
---|
J Am Soc Nephrol
January 2025
Nephrology Division, Department of Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
Background: Peritoneal fibrosis is a serious complication of long-term peritoneal dialysis (PD) and abdominal surgeries, yet effective treatments remain elusive. Given the known roles of mucosal-associated invariant T (MAIT) cells in immune responses and fibrotic diseases, we investigated their involvement in PD-induced peritoneal fibrosis to identify potential therapeutic targets.
Methods: We employed single-cell RNA sequencing (scRNA-seq) and flow cytometry to characterize the activation and function of peritoneal MAIT cells in patients undergoing long-term PD.
J Occup Health
January 2025
Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
Objectives: Natural fibrous mineral, asbestos, has been useful in industry for many centuries. In the 1960's, epidemiology had recognized the association between asbestos exposure and mesothelioma and the IARC designated all kinds of asbestos as Group 1 in 1987. However, various scientific enigmas remained regarding the molecular mechanisms of asbestos-induced mesothelial carcinogenesis.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
During long-term peritoneal dialysis, peritoneal fibrosis (PF) often happens and results in ultrafiltration failure, which directly leads to the termination of dialysis. The accumulation of extracellular matrix produced from an increasing number of myofibroblasts was a hallmark characteristic of PF. To date, glucose degradation products (GDPs, i.
View Article and Find Full Text PDFClin Nucl Med
January 2025
Department of Ultrasound, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China.
Malignant peritoneal mesothelioma (MPM) is a rare and aggressive malignancy of mesothelial cells in the peritoneum. Herein, we describe the 68Ga-FAPI and 18F-FDG PET/CT findings of MPM in a 41-year-old man. In the present case, the primary and metastatic tumors showed intense 68Ga-FAPI accumulation but no significantly increased 18F-FDG uptake.
View Article and Find Full Text PDFJ Med Case Rep
January 2025
Kabir Medical College, Peshawar, Pakistan.
Background: Malignant mesotheliomas are aggressive forms of tumors arising from mesothelial cells. The most common type is malignant pleural mesothelioma, which progresses rapidly and leads to pleural effusion. It typically affects older men and is strongly associated with asbestos exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!