Tumor response to photodynamic therapy (PDT) is dependent on treatment parameters used. In particular, the light fluence rate may be an important determinant of the treatment outcome. In this clinical case report, we describe the response of angiosarcoma to PDT carried out using different fluence rates and drug and light doses. A patient with recurrent multifocal angiosarcoma of the head and neck was recruited for PDT. A new generation chlorin-based photosensitizer, Fotolon, was administered at a dose of 2.0 to 5.7 mg/kg. The lesions were irradiated with 665 nm laser light for a light dose of 65 to 200 J/cm2 delivered at a fluence rate of 80 or 150 mW/cm2. High dose PDT carried out at a high fluence rate resulted in local control of the disease for up to a year; however, the disease recurred and PDT had to be repeated. PDT of new lesions carried out at a lower fluence rate resulted in tumor eradication. More significantly, it also resulted in spontaneous remission of neighboring and distant untreated lesions. Repeat PDT carried out on a recurrent lesion at a lower fluence rate resulted in eradication of both treated and untreated lesions despite the lower total light dose delivered. Immunohistochemical examination of biopsy samples implies that PDT could have activated a cell-mediated immune response against untreated lesions. Subsequent histopathological examination of the lesion sites showed negative for disease. Our clinical observations show that lower fluence rate PDT results in better outcome and also indicate that the fluence rate, rather than the total light dose, is a more crucial determinant of the treatment outcome. Specifically, lower fluence rate PDT appears to activate the body's immune response against untreated lesions.

Download full-text PDF

Source
http://dx.doi.org/10.1615/jenvironpatholtoxicoloncol.v27.i1.40DOI Listing

Publication Analysis

Top Keywords

fluence rate
36
lower fluence
20
untreated lesions
16
immune response
12
pdt carried
12
light dose
12
fluence
10
pdt
10
rate
9
response angiosarcoma
8

Similar Publications

Liposomal doxorubicin (Dox), a treatment option for recurrent ovarian cancer, often suffers from suboptimal biodistribution and efficacy, which might be addressed with precision drug delivery systems. Here, we introduce a catheter-based endoscopic probe designed for multispectral, quantitative monitoring of light-triggered drug release. This tool utilizes red-light photosensitive porphyrin-phospholipid (PoP), which is encapsulated in liposome bilayers to enhance targeted drug delivery.

View Article and Find Full Text PDF

To investigate the impact of the oxidation temperature and variations in airflow conditions on coal spontaneous combustion characteristics, pre-oxidized coal samples were prepared using a programmed temperature rise method. Synchronous thermal analysis experiments and Fourier transform infrared spectroscopy were conducted to explore changes in the thermal effects and functional group content of the coal samples, respectively. The results indicate that variations in pre-oxidation conditions primarily in fluence the activation temperature and maximum weight loss temperature of the coal samples, while exerting a lesser impact on the critical temperature and ignition point.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) relies on the interactions between light, photosensitizers, and tissue oxygen to produce cytotoxic reactive oxygen species (ROS), primarily singlet oxygen (O) through Type II photochemical reactions, along with superoxide anion radicals (O), hydrogen peroxide (HO), and hydroxyl radicals (OH) through Type I mechanisms. Accurate dosimetry, accounting for all three components, is crucial for predicting and optimizing PDT outcomes. Conventional dosimetry tracks only light fluence rate and photosensitizer concentration, neglecting the role of tissue oxygenation.

View Article and Find Full Text PDF

Liposomal doxorubicin (Dox), a treatment option for recurrent ovarian cancer, often suffers from suboptimal biodistribution and efficacy, which might be addressed with precision drug delivery systems. Here, we introduce a catheter-based endoscopic probe designed for multispectral, quantitative monitoring of light-triggered drug release. This tool utilizes red-light photosensitive porphyrin-phospholipid (PoP), which is encapsulated in liposome bilayers to enhance targeted drug delivery.

View Article and Find Full Text PDF

A preliminary study was conducted using electronic portal imaging device (EPID) based dose verification in pre-treatment and in vivo dose reconstruction modes for breast cancer intensity-modulated radiation therapy (IMRT) technique with known repositioning set-up errors. For 43 IMRT plans, the set-up errors were determined from 43 sets of EPID images and 258 sets of cone beam computed tomography images. In-house developed Edose software was used to reconstruct the dose distribution using the pre-treatment and on-treatment (in vivo) EPID acquired fluence maps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!