This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives, including flavouring agents, with a view to recommending acceptable daily intakes (ADIs) and to preparing specifications for identity and purity. The Committee also evaluated the risk posed by two food contaminants, with the aim of advising on risk management options for the purpose of public health protection. The first part of the report contains a general discussion of the principles governing the toxicological evaluation and assessment of intake of food additives (in particular flavouring agents) and contaminants. A summary follows of the Committee's evaluations of technical, toxicological and intake data for certain food additives (acidified sodium chlorite, asparaginase from Aspergillus oryzae expressed in Aspergillus oryzae, carrageenan and processed Eucheuma seaweed, cyclotetraglucose and cyclotetraglucose syrup, isoamylase from Pseudomonas amyloderamosa, magnesium sulfate, phospholipase A1 from Fusarium venenatum expressed in Aspergillus oryzae, sodium iron(III) ethylenediaminetetraacetic acid (EDTA) and steviol glycosides); eight groups of related flavouring agents (linear and branched-chain aliphatic, unsaturated, unconjugated alcohols, aldehydes, acids and related esters; aliphatic acyclic and alicyclic terpenoid tertiary alcohols and structurally related substances; simple aliphatic and aromatic sulfides and thiols; aliphatic acyclic dials, trials and related substances; aliphatic acetals; sulfur-containing heterocyclic compounds; aliphatic and aromatic amines and amides; and aliphatic alicyclic linear alpha, beta -unsaturated di- and trienals and related alcohols, acids and esters); and two food contaminants (aflatoxin and ochratoxin A). Specifications for the following food additives were revised: maltol and ethyl maltol, nisin preparation, pectins, polyvinyl alcohol, and sucrose esters of fatty acids. Specifications for the following flavouring agents were revised: maltol and ethyl maltol, maltyl isobutyrate, 3-acetyl-2,5-dimethylfuran and 2,4,5-trimethyl-delta-oxazoline (Nos 1482, 1506 and 1559), and monomenthyl glutarate (No. 1414), as well as the method of assay for the sodium salts of certain flavouring agents. Annexed to the report are tables summarizing the Committee's recommendations for intakes and toxicological evaluations of the food additives and contaminants considered.
Download full-text PDF |
Source |
---|
Microb Biotechnol
January 2025
Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
Glucose is the most abundant monosaccharide and a principal substrate in biotechnological production processes. In Pseudomonas, this sugar is either imported directly into the cytosol or first oxidised to gluconate in the periplasm. While gluconate is taken up via a proton-driven symporter, the import of glucose is mediated by an ABC-type transporter, and hence both require energy.
View Article and Find Full Text PDFComput Biol Chem
January 2025
Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia. Electronic address:
Menthol is a naturally occurring cyclic terpene alcohol and is the major component of peppermint and corn mint essential oils extracted from Mentha piperita L. and Mentha arvensis L..
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
College of Food Science and Engineering, Ningbo University, Ningbo, 315832, PR China.
Quinoa polysaccharides have attracted significant research interest in recent years due to their diverse biological activities, including antiviral, anti-inflammatory, antioxidant, and immunoregulatory properties. These attributes align with the growing global demand for natural, functional food ingredients, positioning quinoa polysaccharides as a valuable resource in food science and technology. This review presents an overview of the various bioactivities of quinoa polysaccharides, critically evaluates the methods used for their extraction and purification, describes their structural characteristics, and discusses their practical applications across multiple areas within the food industry, including food additives, meat products, health foods, and innovative food packaging.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
The enzyme D-sorbitol dehydrogenase (SLDH) facilitates the conversion of D-sorbitol to L-sorbose. While current knowledge of this enzyme class predominantly centers on Gluconobacter oxydans, the catalytic properties of enzymes from alternative sources, particularly their substrate specificity and coenzyme dependency, remain ambiguous. In this investigation, we conducted BLASTp analysis and screened out a novel SLDH (Fpsldh) from Faunimonas pinastri A52C2.
View Article and Find Full Text PDFJ Food Sci Technol
January 2025
Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan 303002 India.
Artificial sweeteners with almost zero calories are in high demand in the food and beverage industries due to an increase in diabetes and obesity cases throughout the globe. They vary in their chemical structures and sweetness intensity. The health concerns linked to the consumption of these additives have always been a matter of heated debate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!