Chemokine CXCL13, also known as BCA-1 (B cell-attracting chemokine-1) or BLC (B-lymphocyte chemoattractant), is a major regulator of B-cell trafficking. Hepatitis C virus (HCV) infection may be associated with B-cell dysfunction and lymphoproliferative disorders, including mixed cryoglobulinemia (MC). This study evaluates circulating levels of CXCL13 protein and specific mRNA expression in chronically HCV-infected patients with and without MC. Compared with healthy controls and HCV-infected patients without MC, CXCL13 serum levels were significantly higher in MC patients. The highest CXCL13 levels strongly correlated with active cutaneous vasculitis. CXCL13 gene expression in portal tracts, isolated from liver biopsy tissues with laser capture microdissection, showed enhanced levels of specific mRNA in MC patients with active cutaneous vasculitis. Specific CXCL13 gene mRNA expression was also up-regulated in skin tissue of these patients. These findings paralleled specific deposits of CXCL13 protein both in the liver and in the skin. Our results indicate that up-regulation of CXCL13 gene expression is a distinctive feature of HCV-infected patients. Higher levels of this chemokine in the liver as well as in the skin of patients with active MC vasculitis suggest a possible interrelation between these biologic compartments.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2008-02-137455DOI Listing

Publication Analysis

Top Keywords

gene expression
12
active cutaneous
12
cutaneous vasculitis
12
hcv-infected patients
12
cxcl13 gene
12
cxcl13
9
serum levels
8
levels chemokine
8
chemokine cxcl13
8
expression distinctive
8

Similar Publications

Prospective validation study of a combined urine and plasma test for predicting high-grade prostate cancer in biopsy naïve men.

Scand J Urol

January 2025

Department of Urology, Odense University Hospital, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.

Objective: Early and accurate diagnosis of prostate cancer (PC) is crucial for effective treatment. Diagnosing  clinically insignificant cancers can lead to overdiagnosis and overtreatment, highlighting the importance of accurately selecting patients for further evaluation based on improved risk prediction tools. Novel biomarkers offer promise for enhancing this diagnostic process.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC). Due to the lack of symptoms until advanced stages, early diagnosis of ccRCC is challenging. Therefore, the identification of novel secreted biomarkers for the early detection of ccRCC is urgently needed.

View Article and Find Full Text PDF

Introduction: Cerebrovascular dysfunction plays a critical role in the pathogenesis of dementia and related neurodegenerative disorders. Recent omics-driven research has revealed associations between vascular abnormalities and transcriptomic alterations in brain vascular cells, particularly endothelial cells (ECs) and pericytes (PCs). However, the impact of these molecular changes on dementia remains unclear.

View Article and Find Full Text PDF

Mediator, a transcriptional coactivator, regulates plant growth and development by interacting with various transcriptional regulators. MEDIATOR15 (MED15) is a subunit in the Mediator complex potentially involved in developmental control. To uncover molecular functions of Arabidopsis MED15 in development, we searched for its interactors.

View Article and Find Full Text PDF

The aerial epidermis is a major site of quinolizidine alkaloid biosynthesis in narrow-leafed lupin.

New Phytol

January 2025

Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.

Lupins are promising protein crops that accumulate toxic quinolizidine alkaloids (QAs) in the seeds, complicating their end-use. QAs are synthesized in green organs (leaves, stems, and pods) and a subset of them is transported to the seeds during fruit development. The exact sites of biosynthesis and accumulation remain unknown; however, mesophyll cells have been proposed as sources, and epidermal cells as sinks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!