Exocytosis of neurotransmitters and hormones occurs through the fusion of secretory vesicles with the plasma membrane. This highly regulated process involves key proteins, such as SNAREs, and specific lipids at the site of membrane fusion. Phospholipase D (PLD) has recently emerged as a promoter of membrane fusion in various exocytotic events potentially by providing fusogenic cone-shaped phosphatidic acid. We show here that PLD1 is regulated by ribosomal S6 kinase 2 (RSK2)-dependent phosphorylation. RSK2 is activated by a high K(+)-induced rise in cytosolic calcium. Expression of inactive RSK2 mutants or selective knockdown of endogenous RSK2 dramatically affects the different kinetic components of the exocytotic response in chromaffin cells. RSK2 physically interacts with and stimulates PLD activity through the phosphorylation of Thr-147 in the PLD1 amino-terminal phox homology domain. Expression of PLD1 phosphomimetic mutants fully restores secretion in cells depleted of RSK2, suggesting that RSK2 is a critical upstream signaling element in the activation of PLD1 to produce the lipids required for exocytosis. We propose that PLD-related defects in neuronal and endocrine activities could contribute to the effect observed after the loss-of-function mutations in Rsk2 that lead to Coffin-Lowry syndrome, an X-linked form of growth and mental retardation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2448854 | PMC |
http://dx.doi.org/10.1073/pnas.0710676105 | DOI Listing |
Appl Biochem Biotechnol
January 2025
Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
Cancer Res Commun
December 2024
University of California, San Diego, La Jolla, CA, United States.
Tuspetinib (TUS) is a well-tolerated, once daily, oral kinase inhibitor in clinical development for treatment of AML. Nonclinical studies show that TUS targets key pro-survival kinases with IC50 values in the low nM range, including SYK, wildtype and mutant forms of FLT3, mutant but not wildtype forms of KIT, RSK2 and TAK1-TAB1 kinases, and indirectly suppresses expression of MCL1. Oral TUS markedly extended survival in subcutaneously and orthotopically inoculated xenograft models of FLT3 mutant human AML, was well tolerated, and delivered enhanced activity when combined with venetoclax or 5-azacytidine.
View Article and Find Full Text PDFExpert Opin Ther Targets
December 2024
Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
Introduction: The four members of the p90 ribosomal S6 kinase (RSK) family are serine/threonine protein kinases, which are phosphorylated and activated by ERK1/2. RSK1/2/3 are further phosphorylated by PDK1. Receiving inputs from two major signaling pathways places RSK as a key signaling node in numerous pathologies.
View Article and Find Full Text PDFBrain Res
February 2025
Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, China. Electronic address:
In the context of our previous analyses on the main active ingredients of Jieyudan, a classic formula targeting aphasia in stroke, we further delve into the function and mechanisms of its active ingredient, Diosmin (DM), which may exert neuroprotective effects, in ischemic stroke. Herein, bioinformatics analysis revealed targets of DM and their intersection with differentially expressed genes in ischemic stroke. Middle cerebral artery occlusion (MCAO) rats and oxygen-glucose deprivation (OGD) cells were used to construct in vivo and in vitro models of ischemic stroke.
View Article and Find Full Text PDFPLoS One
October 2024
Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!