Notch resolves mixed neural identities in the zebrafish epiphysis.

Development

Centre de Biologie du Développement, UMR 5547 CNRS/UPS, Université Paul Sabatier Bât. 4R3, Toulouse Cedex 9, France.

Published: August 2008

Manipulation of Notch activity alters neuronal subtype identity in vertebrate neuronal lineages. Nonetheless, it remains controversial whether Notch activity diversifies cell fate by regulating the timing of neurogenesis or acts directly in neuronal subtype specification. Here, we address the role of Notch in the zebrafish epiphysis, a simple structure containing only two neural subtypes: projection neurons and photoreceptors. Reducing the activity of the Notch pathway results in an excess of projection neurons at the expense of photoreceptors, as well as an increase in cells retaining a mixed identity. However, although forced activation of the pathway inhibits the projection neuron fate, it does not promote photoreceptor identity. As birthdating experiments show that projection neurons and photoreceptors are born simultaneously, Notch acts directly during neuronal specification rather than by controlling the timing of neurogenesis. Finally, our data suggest that two distinct signals are required for photoreceptor fate specification: one for the induction of the photoreceptor fate and the other, involving Notch, for the inhibition of projection neuron traits. We propose a novel model in which Notch resolves mixed neural identities by repressing an undesired genetic program.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.013482DOI Listing

Publication Analysis

Top Keywords

projection neurons
12
notch
8
notch resolves
8
resolves mixed
8
mixed neural
8
neural identities
8
zebrafish epiphysis
8
notch activity
8
neuronal subtype
8
timing neurogenesis
8

Similar Publications

Basal forebrain innervation of the amygdala: an anatomical and computational exploration.

Brain Struct Funct

January 2025

Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.

Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity.

View Article and Find Full Text PDF

Pain is a dynamic and nonlinear experience shaped by injury and contextual factors, including expectations of future pain or relief . While µ opioid receptors are central to the analgesic effects of opioid drugs, the endogenous opioid neurocircuitry underlying pain and placebo analgesia remains poorly understood. The ventrolateral column of the posterior periaqueductal gray is a critical hub for nociception and endogenous analgesia mediated by opioid signaling .

View Article and Find Full Text PDF

Insomnia, as a common sleep disorder, is the most common complaints in medical practice affecting a large proportion of the population on a situational, recurrent or chronic basis. It has been demonstrated that, during wakefulness, patients with insomnia exhibit increased EEG power in theta, beta, and gamma band. However, the relevant mechanisms underlying such power changes are still lack of understanding.

View Article and Find Full Text PDF

The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons that regulate responses to a variety of interoceptive and cutaneous sensory signals. One lateral PB subpopulation expresses the Calca gene, which codes for the neuropeptide calcitonin gene-related peptide (CGRP). These PB neurons relay signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet their inputs and their neurochemical identity are only partially understood.

View Article and Find Full Text PDF

Role of the Dorsal Cortex of the Inferior Colliculus in the Precedence Effect.

Med Sci Monit

January 2025

Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.

BACKGROUND The precedence effect (PE) is a physiological phenomenon for accurate sound localization in a reverberant environment. Physiological studies of PE have mostly focused on the central nucleus of the inferior colliculus (CNIC), which receives ascending and descending projections, as well as projections from the shell of the inferior colliculus (IC) and contralateral IC. However, the role of the dorsal cortex of the IC (DCIC), which receives ascending and descending projections to ensure sound information processing and conduction on PE formation, remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!