Maturation efficiency of viral glycoproteins in the ER impacts the production of influenza A virus.

Virus Res

Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.

Published: September 2008

We have studied which steps are enhanced in the infectious cycle of influenza A virus in Madin-Darby canine kidney (MDCK) cells, a cell line investigated for use in the production of an influenza vaccine because of its ability to yield high levels of virus. We have confirmed that MDCK had the highest production levels of virions among several cell lines early in the infection. Influenza A virus showed similar levels of viral genomic RNA replication, mRNA transcription, and protein expression in A549 as in MDCK. Thus, we focused on the post-translational transport of viral glycoproteins from the endoplasmic reticulum (ER) to the plasma membrane. Comparative characterization revealed more efficient processing in the folding and maturation of hemagglutinin and neuraminidase in the ER in MDCK than in A549. Also, the subsequent transport of these glycoproteins to the plasma membrane occurred much earlier in MDCK. These results indicate that the folding and maturation efficiencies of viral glycoproteins in the ER impact the efficiency with which influenza A viral particles are produced.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virusres.2008.04.028DOI Listing

Publication Analysis

Top Keywords

viral glycoproteins
12
influenza virus
12
production influenza
8
plasma membrane
8
folding maturation
8
viral
5
influenza
5
mdck
5
maturation efficiency
4
efficiency viral
4

Similar Publications

Epstein-Barr virus (EBV) establishes persistent infection, causes infectious mononucleosis, is a major trigger for multiple sclerosis and contributes to multiple cancers. Yet, knowledge remains incomplete about how the virus remodels host B cells to support lytic replication. We previously identified that EBV lytic replication results in selective depletion of plasma membrane (PM) B cell receptor (BCR) complexes, composed of immunoglobulin and the CD79A and CD79B signaling chains.

View Article and Find Full Text PDF

Influenza virus infects millions each year, contributing greatly to human morbidity and mortality. Upon viral infection, pathogen-associated molecular patterns activate pattern recognition receptors on host cells, triggering an immune response. The CD209 protein family, homologs of DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin), is thought to modulate immune responses to viruses.

View Article and Find Full Text PDF

Prion protein modulation of virus-specific T cell differentiation and function during acute viral infection.

Immunohorizons

January 2025

Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States.

The differentiation and functionality of virus-specific T cells during acute viral infections are crucial for establishing long-term protective immunity. While numerous molecular regulators impacting T cell responses have been uncovered, the role of cellular prion proteins (PrPc) remains underexplored. Here, we investigated the impact of PrPc deficiency on the differentiation and function of virus-specific T cells using the lymphocytic choriomeningitis virus (LCMV) Armstrong acute infection model.

View Article and Find Full Text PDF

Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) caused by pathogenic immunoglobulin G antibodies to myelin oligodendrocyte glycoprotein is a rare demyelinating disease of the central nerve system (CNS). The clinical phenotypes of MOGAD include acute disseminated encephalomyelitis, optic neuritis, and transverse myelitis. At present, the mechanism underlying the disease is unknown.

View Article and Find Full Text PDF

Objectives: This study aimed to investigate the association of baseline coagulation proteins with hospitalization variables in COVID-19 patients admitted to ICU, as well as coagulation system changes after one-year post-discharge, taking into account gender-specific bias in the coagulation profile.

Methods: We conducted a prospective longitudinal study on 49 ICU-admitted COVID-19 patients. Proteins were measured using a Luminex 200™.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!