Background: Recent data suggest that excessive glutamatergic signaling in the prefrontal cortex may contribute to the pathophysiology of schizophrenia and that promoting presynaptic glutamate modulation via group II metabotropic glutamate 2/3 (mGlu2/3) receptor activation can exert antipsychotic efficacy. The glial glutamate and aspartate transporter (GLAST) (excitatory amino acid transporter 1 [EAAT1]) regulates extracellular glutamate levels via uptake into glia, but the consequences of GLAST dysfunction for schizophrenia are largely unknown.

Methods: We examined GLAST knockout mice (KO) for behaviors thought to model positive symptoms in schizophrenia (locomotor hyperactivity to novelty, exaggerated locomotor response to N-methyl-d-aspartate receptor [NMDAR] antagonism) and the ability of haloperidol and the mGlu2/3 agonist LY379268 to normalize novelty-induced hyperactivity.

Results: Glial glutamate and aspartate transporter KO consistently showed locomotor hyperactivity to a novel but not familiar environment, relative to wild-type (WT) mice. The locomotor hyperactivity-inducing effects of the NMDAR antagonist MK-801 was exaggerated in GLAST KO relative to WT. Treatment with haloperidol or LY379268 normalized novelty-induced locomotor hyperactivity in GLAST KO.

Conclusions: Schizophrenia-related abnormalities in GLAST KO raise the possibility that loss of GLAST-mediated glutamate clearance could be a pathophysiological risk factor for the disease. Our findings provide novel support for the hypothesis that glutamate dysregulation contributes to the pathophysiology of schizophrenia and for the antipsychotic potential of mGlu2/3 agonists.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2696047PMC
http://dx.doi.org/10.1016/j.biopsych.2008.05.001DOI Listing

Publication Analysis

Top Keywords

locomotor hyperactivity
16
glial glutamate
12
glutamate aspartate
12
aspartate transporter
12
glutamate
9
excitatory amino
8
amino acid
8
acid transporter
8
metabotropic glutamate
8
glutamate 2/3
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!