Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Host insects are either susceptible or resistant to parasitoids, where resistant hosts express immunity factors and compatible parasitoids express virulence factors that may reveal the manipulation of susceptible hosts. Using proteomics we compared responses of the same host, the aphid Macrosiphum euphorbiae, challenged by a well-adapted parasitoid Aphidius nigripes or by a less adapted relative, Aphidius ervi. The host was found to be equally acceptable to both parasitoids, but while A. nigripes normally developed and killed hosts (high susceptibility), development of the incompatible A. ervi was arrested at the primary egg stage (high resistance). Two-dimensional gels at two stages of parasitism revealed divergence in patterns of protein regulation of the M. euphorbiae host, responding to A. ervi or A. nigripes, with the greatest number of protein modulations in the host resistance response. In A. ervi-resistant hosts, proPO was strongly up-regulated, as were also three cuticle proteins, suggesting a PO basis and exoskeleton reinforcement as early and late responses of M. euphorbiae to the risk of parasitism. Resistance also correlated with up-regulation of antioxidative, energy-related, cytoskeleton and heat shock proteins. In A. nigripes-susceptible hosts, various proteins implicated in host and bacterial symbiont metabolism were significantly altered, suggesting complex host nutritional modulation. Over-expression of energy-related proteins also increased when A. nigripes established and developed. Aphid proteomes of compatible and incompatible Aphidius parasitism provide an integrative basis for consolidating our knowledge of host-parasitoid interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ibmb.2008.04.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!