[Isolation and culture of human embryonic AGM derived HSPCs in hematopoietic culture systems created by AGM stromal cells].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

Department of Pediatrics, The First Hospital, Shantou University Medical College, Shantou 515041, Guangdong Province, China.

Published: June 2008

This study was purposed to isolate human embryonic AGM derived HSPCs and investigate the effect of AGM stromal cells on AGM-derived HSPCs. Immunohistochemical sections of human AGM tissue were investigated for CD34, Flk-1 and VEGF expression. Human AGM-derived single cells were isolated and seeded onto pre-treated feeder of human AGM stromal cells (hAGMS3 and hAGMS4) by direct contact and non-contact co-culture in Transwell culture system. Growth characteristics of HSPCs with cobblestone area-forming cells (CAFCs) were observed and number of cobblestone area (CA) was counted. Indirect immunofluorescent assay was used to detect CD34 and Flk-1 expression on the surface of suspended cells as well as CAFCs in contact co-culture system. The cells after culture for 2 weeks were collected from both contact and non-contact co-culture systems for CFU assay. The result showed that hematopoietic cells in AGM tissue expressed CD34 and Flk-1. Both of the hematopoietic culture systems could produce CFCs. Nevertheless, direct contact co-culture produced CD34(+)Flk-1(+) CAFC and more CFUs than those from indirect non-contact culture (hAGMS3 system: 1647 +/- 194 vs 389 +/- 31, p < 0.05; hAGMS4 system: 1586 +/- 75 vs 432 +/- 35, p < 0.05). It is concluded that there were CD34(+)Flk-1(+) HSCs in human embryonic AGM region. The hematopoietic co-culture systems composed of AGM-derived HSPCs and AGM stromal cells are successfully established, both direct contact and Transwell non-contact co-culture can expand AGM-derived definitive HSPCs. Cell-cell contact between AGM-derived HSPCs and AGM stromal cells are of most importance to maintain and expand AGM-HSPCs.

Download full-text PDF

Source

Publication Analysis

Top Keywords

agm stromal
20
stromal cells
16
human embryonic
12
embryonic agm
12
agm-derived hspcs
12
cd34 flk-1
12
direct contact
12
non-contact co-culture
12
agm
10
cells
9

Similar Publications

Embryonic macrophages support endocrine commitment during human pancreatic differentiation.

Cell Stem Cell

November 2024

McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada. Electronic address:

Organogenesis is a complex process that relies on a dynamic interplay between extrinsic factors originating from the microenvironment and tissue-specific intrinsic factors. For pancreatic endocrine cells, the local niche consists of acinar and ductal cells as well as neuronal, immune, endothelial, and stromal cells. Hematopoietic cells have been detected in human pancreas as early as 6 post-conception weeks, but whether they play a role during human endocrinogenesis remains unknown.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) produce all essential cellular components of the blood. Stromal cell lines supporting HSCs follow a vascular smooth muscle cell (vSMC) differentiation pathway, suggesting that some hematopoiesis-supporting cells originate from vSMC precursors. These pericyte-like precursors were recently identified in the aorta-gonad-mesonephros (AGM) region; however, their role in the hematopoietic development in vivo remains unknown.

View Article and Find Full Text PDF

PDGFRβ cells play a dual role as hematopoietic precursors and niche cells during mouse ontogeny.

Cell Rep

July 2022

Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK; Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK. Electronic address:

Hematopoietic stem cell (HSC) generation in the aorta-gonad-mesonephros region requires HSC specification signals from the surrounding microenvironment. In zebrafish, PDGF-B/PDGFRβ signaling controls hematopoietic stem/progenitor cell (HSPC) generation and is required in the HSC specification niche. Little is known about murine HSPC specification in vivo and whether PDGF-B/PDGFRβ is involved.

View Article and Find Full Text PDF

The search for the origin of the first hematopoietic stem cells (HSCs) in the mouse embryo has been a hot topic in the field of developmental hematopoiesis. Detecting lymphoid potential is one of the supportive evidence to show the definitive hematopoietic activity of HSCs. However, the first B-lymphoid potential in the mouse embryos are reported to be biased to innate-like B-1 cell lineage that can develop from hemogenic endothelial cells (HECs) independently of HSCs.

View Article and Find Full Text PDF

Overexpression of HOXA9 upregulates NF-κB signaling to promote human hematopoiesis and alter the hematopoietic differentiation potentials.

Cell Regen

January 2021

Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China.

Background: The HOX genes are master regulators of embryogenesis that are also involved in hematopoiesis. HOXA9 belongs to a cluster of HOX genes that play extensively studied roles in hematopoiesis and leukemogenesis.

Methods: We established HOXA9-inducible human embryonic stem cells (HOXA9/hESCs) with normal pluripotency and potential for hematopoiesis, which could be used to analyze gene function with high accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!