Parametrization and application of scatter kernels for modelling scanned proton beam collimator scatter dose.

Phys Med Biol

Section of Oncology, Department of Oncology, Radiology and Clinical Immunology, Uppsala University, Akademiska Sjukhuset, S-751 85 Uppsala, Sweden.

Published: July 2008

Collimators are routinely used in proton radiotherapy to laterally confine the field and improve the penumbra. Collimator scatter contributes up to 15% of the local dose and is therefore important to include in treatment planning dose calculation. We present a method for reconstruction of the collimator scatter phase space based on the parametrization of pre-calculated scatter kernels. Collimator scatter distributions, generated by the Monte Carlo (MC) package GEANT4.8.2, were scored differential in direction and energy. The distributions were then parametrized so as to enable a fast reconstruction by sampling. MC calculated dose distributions in water based on the parametrized phase space were compared to full MC simulations that included the collimator in the simulation geometry, as well as to experimental data. The experiments were performed at the scanned proton beam line at the The Svedberg Laboratory (TSL) in Uppsala, Sweden. Dose calculations using the parametrization of this work and the full MC for isolated typical cases of collimator scatter were compared by means of the gamma index. The result showed that in total 96.7% (99.3%) of the voxels fulfilled the gamma 2.0%/2.0 mm (3.0%/3.0 mm) criterion. The dose distribution for a collimated field was calculated based on the phase space created by the collimator scatter model incorporated into the generation of the phase space of a scanned proton beam. Comparing these dose distributions to full MC simulations, including particle transport in the MLC, yielded that in total for 18 different collimated fields, 99.1% of the voxels satisfied the gamma 1.0%/1.0 mm criterion and no voxel exceeded the gamma 2.6%/2.6 mm criterion. The dose contribution of collimator scatter along the central axis as predicted by the model showed good agreement with experimental data.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0031-9155/53/13/001DOI Listing

Publication Analysis

Top Keywords

collimator scatter
28
phase space
16
scanned proton
12
proton beam
12
scatter
9
scatter kernels
8
collimator
8
dose
8
dose distributions
8
full simulations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!