ZFY, a male-associated Zn-finger protein encoded by the human Y chromosome, exhibits a distinctive two-finger repeat: whereas odd-numbered domains fit a general consensus, even-numbered domains exhibit systematic differences. Do these odd and even sequences encode structurally distinct surfaces for DNA recognition? As a first step toward answering this question, we have recently described the sequential 1H NMR assignment of a representative nonconsensus Zn finger (designated ZFY-6T) based on 2D NMR studies of a 30-residue peptide [Kochoyan, M., Havel, T.F., Nguyen, D.T., Dahl, C.E., Keutmann, H. T., & Weiss, M.A. (1991) Biochemistry 30, 3371-3386]. Initial structural modeling by distance geometry/simulated annealing (DG/SA) demonstrated that this peptide retained the N-terminal beta-hairpin and C-terminal alpha-helix (beta beta alpha motif) observed in consensus Zn fingers. However, the precision of this initial structure was limited by resonance overlap, which led to ambiguities in the assignment of key NOEs in the hydrophobic core. In this paper these ambiguities are resolved by selective deuterium labeling, enabling a refined structure to be calculated by DG/SA and restrained molecular dynamics. These calculations provide a detailed view of the hydrophobic core and protein surface, which are analyzed in reference to previously characterized Zn fingers. Variant (even) and consensus (odd) aromatic residues Y10 and F12, shown in an "aromatic swap" analogue to provide equivalent contributions to the hydrophobic core [Weiss, M.A., & Keutmann, H.T. (1990) Biochemistry 29, 9808-9813], nevertheless exhibit striking differences in packing interactions: Y10--but not F12--contributes to a contiguous region of the protein surface defined by putative specificity-determining residues. Alternating surface architectures may have implications for the mechanism of DNA recognition by the ZFY two-finger repeat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00243a005 | DOI Listing |
Small
January 2025
Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China.
Thermal management is a key link in improving energy utilization and preparing insulation materials with excellent performance is the core technological issue. Complex and irregular pore structures of insulation materials hinder the exploration of structure-property relationships and the further promotion of material performance. Ordered mesoporous silica (OMS) is a kind of porous material with ordered frameworks.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Centre for Bacterial Resistance Biology, Imperial College London, LondonSW7 2AZ, United Kingdom.
The RNA chaperone Hfq plays crucial roles in bacterial gene expression and is a major facilitator of small regulatory RNA (sRNA) action. The toroidal architecture of the Hfq hexamer presents three well-characterized surfaces that allow it to bind sRNAs to stabilize them and engage target transcripts. Hfq-interacting sRNAs are categorized into two classes based on the surfaces they use to bind Hfq.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
The myeloid-specific triggering receptors expressed on myeloid cells 2 (TREM2) is a group of class I receptors expressed in brain microglia plays a decisive role in neurodegenerative diseases such as Alzheimer's disease (AD) and Nasu Hakola disease (NHD). The extracellular domain (ECD) of TREM2 interacts with a wide-range of ligands, yet the molecular mechanism underlying recognition of such ligands to this class I receptor remains underexplored. Herein, we undertook a systematic investigation for exploring the mode of ligand recognition in immunoglobulin-like ectodomain by employing both knowledge-based and machine-learning guided molecular docking approach followed by the state-of-the-art all atoms molecular dynamics (MD) simulations.
View Article and Find Full Text PDFJ Control Release
January 2025
Asymmetric Synthesis and Functional Nanosystems Group (Art&Fun), Institute of Chemical Research (IIQ), CSIC-University of Seville, C/ Américo Vespucio 49, 41092 Seville, Spain. Electronic address:
In this study, we present the first comparative analysis of active and passive drug delivery systems for docetaxel (DTX) in prostate cancer using supramolecular self-assembled micellar nanovectors. Specifically, we developed two novel micelles based on polydiacetylenic amphiphiles (PDA) for passive and active targeting. The active targeting micelles were designed with a prostate-specific membrane antigen (PSMA) ligand, ACUPA, to facilitate recognition by PSMA-positive cancer cells.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China.
The Bohai oilfield is characterized by severe heterogeneity and high average permeability, leading to a low water flooding recovery efficiency. Polymer flooding only works for a certain heterogeneous reservoir. Therefore, supplementary technologies for further enlarging the swept volume are still necessary.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!