A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of the tetratricopeptide-containing domain of BUB1, BUBR1, and PP5 proves that domain amphiphilicity over amino acid sequence specificity governs protein adsorption and interfacial activity. | LitMetric

The tetratricopeptide motif repeat (TPR) is an alpha-helix-turn-alpha-helix motif that typically mediates protein-protein and, in some cases, protein-lipid interactions. Because of its success, this motif has been preserved through evolution and can be identified in proteins of a wide range of functions in lower and higher organisms. The N-terminal region of BUB1, BUBR1, and protein phosphatase 5 (PP5) contains tandem arrangements of the TPR motif. BUB1 and BUBR1 are conserved multidomain protein kinases that play a key role in the mitotic checkpoint, the mechanism that ensures the synchrony of chromosome segregation. PP5 is an enzyme that targets a wide range of protein substrates including single transmembrane receptors and mammalian cryptochromes. The N-terminal TPR domain of PP5 regulates the activity of the C-terminal catalytic domain through direct interaction with protein and lipid molecules. We portray the biophysical and biochemical properties of the tandem arrangements of the TPR motif of BUB1, BUBR1, and PP5 using far-UV spectroscopy, solution X-ray scattering, null ellipsometry, surface rheology measurements, and Brewster angle microscopy (BAM) observations. We show that, despite the low amino acid sequence conservation and different function, the TPR motif repeats of the three proteins exhibit similar interfacial properties including adsorption kinetics, high surface activity, and the formation of stable, rigid films at the air/water interface. Our studies demonstrate that domain amphiphilicity is of higher importance than amino acid sequence specificity in the determination of protein adsorption and interfacial activity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp711222sDOI Listing

Publication Analysis

Top Keywords

bub1 bubr1
16
amino acid
12
acid sequence
12
tpr motif
12
bubr1 pp5
8
domain amphiphilicity
8
sequence specificity
8
protein adsorption
8
adsorption interfacial
8
interfacial activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!