Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The use of microporous materials with ordered porous structures as the hosts to encapsulate metal nanoclusters has attracted particular interest in catalysis because the pore size restriction could limit the growth of nanoclusters and lead to an increase in the percentage of the catalytically active surface atoms. This letter reports the preparation of ruthenium(0) nanoclusters stabilized by the framework of Zeolite-Y by using a simple, easy, efficient method and their superb catalytic activities in two important reactions: the hydrogenation of arenes (benzene, toluene, o-xylene, mesitylene) and the hydrolysis of sodium borohydride, all at room temperature. Particularly, the intrazeolite ruthenium(0) nanoclusters exhibit unprecedented catalytic activity in the hydrogenation of neat benzene at 22.0 +/- 0.1 degrees C and 40 +/- 1 psig H2 with a record TOF of 1040 mol benzene/mol Ru . h.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la800874u | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!