Modeling of specification events during development poses new challenges to biochemical modeling. These include data limitations and a notorious absence of homeostasis in developing systems. The sea urchin is one of the best studied model organisms concerning development and a network, the Endomesoderm Network, has been proposed that is presumed to control endoderm and mesoderm specification in the embryo of Strongy-locentrotus purpuratus. We have constructed a dynamic model of a subnetwork of the Endomesoderm Network. In constructing the model, we had to resolve the following issues: choice of appropriate subsystem, assignment of embryonic data to cellular model, choice of appropriate kinetics. Although the resulting model is capable of reproducing fractions of the experimental data, it falls short of reproducing specification of cell types. These findings can facilitate the refinement of the Endomesoderm Network.
Download full-text PDF |
Source |
---|
Development
December 2024
Department of Biology, Duke University, Durham, NC 27708, USA.
J Cell Sci
July 2023
Paris-Saclay Institute of Neuroscience, CNRS, UMR CNRS 9197, Université Paris-Saclay, 75005 Paris, France.
One presenilin gene (PSEN) is expressed in the sea urchin embryo, in the vegetal pole of the gastrula and then mainly in cilia cells located around the digestive system of the pluteus, as we recently have reported. PSEN expression must be accurately regulated for correct execution of these two steps of development. While investigating PSEN expression changes in embryos after expansion of endoderm with LiCl or of ectoderm with Zn2+ by whole-mount in situ hybridization (WISH) and quantitative PCR (qPCR), we detected natural antisense transcription of PSEN.
View Article and Find Full Text PDFLife Sci Alliance
September 2022
Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología/1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Buenos Aires, Argentina
In vertebrates, Nodal signaling plays a major role in endomesoderm induction, but germ layer delimitation is poorly understood. In avian embryos, the neural/mesoderm boundary is controlled by the transcription factor CHURCHILL1, presumably through the repressor ZEB2, but there is scarce knowledge about its role in other vertebrates. During amphibian gastrulation, Delta/Notch signaling refines germ layer boundaries in the marginal zone, but it is unknown the place this pathway occupies in the network comprising Churchill1 and Nodal.
View Article and Find Full Text PDFFront Cell Dev Biol
September 2021
Predictive Genetics and Multicellular Systems, CMPG, University of Leuven, Leuven, Belgium.
During asymmetrical division of the endomesodermal precursor cell EMS, a cortical flow arises, and the daughter cells, endodermal precursor E and mesodermal precursor MS, have an enduring difference in the levels of F-actin and non-muscular myosin. Ablation of the cell cortex suggests that these observed differences lead to differences in cortical tension. The higher F-actin and myosin levels in the MS daughter coincide with cell shape changes and relatively lower tension, indicating a soft, actively moving cell, whereas the lower signal in the E daughter cell is associated with higher tension and a more rigid, spherical shape.
View Article and Find Full Text PDFDevelopment
October 2021
Department of Biology, Duke University, Durham, NC 27708, USA.
Using scRNA-seq coupled with computational approaches, we studied transcriptional changes in cell states of sea urchin embryos during development to the larval stage. Eighteen closely spaced time points were taken during the first 24 h of development of Lytechinus variegatus (Lv). Developmental trajectories were constructed using Waddington-OT, a computational approach to 'stitch' together developmental time points.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!