Cdk9-55: a new player in muscle regeneration.

J Cell Physiol

Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, USA.

Published: September 2008

Adult skeletal muscle contains a specialized population of myogenic quiescent stem cells, termed satellite cells, which contribute to repair myofibers after injury. During muscle regeneration, satellite cells exit their normal quiescent state, proliferate, activating MyoD and Myf-5 expression, and finally differentiate and fuse to reconstitute the injured muscle architecture. We have previously reported that cdk9 is required for myogenesis in vitro by activating MyoD-dependent transcription. In myoblasts induced to differentiate, MyoD recruits cdk9 on the chromatin of muscle-specific regulatory regions. This event correlates with chromatin-modifying enzyme recruitment and phosphorylation of cdk9-specific target residues at the carboxyl-terminal domain of RNA polymerase II. Here we report that a second cdk9 isoform, termed cdk9-55, plays a fundamental role in muscle regeneration and differentiation in vivo. This alternative form is specifically induced in injured myofibers and its activity is strictly required for the completion of muscle regeneration process.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.21361DOI Listing

Publication Analysis

Top Keywords

muscle regeneration
16
satellite cells
8
muscle
6
cdk9-55 player
4
player muscle
4
regeneration
4
regeneration adult
4
adult skeletal
4
skeletal muscle
4
muscle specialized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!