Granulocyte-macrophage colony stimulating factor (GMCSF) promotes the growth of granulocytes and macrophages from undifferentiated bone marrow cells and modulates the oxidative responses of polymorphonuclear leukocytes (PMN) to endogenous chemoattractants. We found that, in vitro, naturally occurring glycolsylated human GMCSF does not disturb the resting canine PMN membrane potential, may attentuate PMN oxidative responses to PMA, and is, to a small degree, chemotaxigenic. GMCSF, however, inhibits PMN chemotaxis to zymosan-activated plasma (ZAP). Compared to temperature controls, GMCSF (1-100 U/ml) produced up to 1.5-fold increases in H2O2 production after 15 minutes, while phorbol myristate acetate (PMA) treated cells increased H2O2 production 8-12-fold after 15 minutes. Preincubation of cells with GMCSF (1-100 U/ml) prior to PMA stimulation significantly reduced the H2O2 levels induced by PMA. H2O2 production was inhibited up to 15% after 15 minutes of GMCSF preincubation and up to 40% after 60 minutes of preincubation. As a chemotaxigenic agent, GMCSF (10-1000 U/ml) was able to elicit 49%-102% increases in quantitative cellular migration, compared to random migration. Total cellular chemotaxis to GMCSF was less than 30% of the response to ZAP. Preincubation of PMNs with GMCSF for 15 minutes significantly inhibited ZAP-induced cellular migration. Human GMCSF does not appear to activate canine PMN in vitro and may actually down-regulate PMN inflammatory responses.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02171686DOI Listing

Publication Analysis

Top Keywords

h2o2 production
12
gmcsf
10
granulocyte-macrophage colony
8
colony stimulating
8
stimulating factor
8
oxidative responses
8
human gmcsf
8
canine pmn
8
gmcsf 1-100
8
1-100 u/ml
8

Similar Publications

Tailored biomimetic nanoreactor improves glioma chemodynamic treatment via triple glutathione depletion and prompt acidity elevation.

Mater Today Bio

February 2025

Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.

Chemodynamic therapy (CDT) is an emerging antitumor strategy utilizing iron-initiated Fenton reaction to destroy tumor cells by converting endogenous HO into highly toxic hydroxyl radical (OH). However, the intratumoral overexpressed glutathione (GSH) and deficient acid greatly reduce CDT efficacy because of OH scavenging and decreased OH production efficiency. Even worse, the various physiological barriers, especially in glioma, further put the brakes on the targeted delivery of Fenton agents.

View Article and Find Full Text PDF

Hollow TiO@TpPa S-Scheme Photocatalyst for Efficient HO Production Through O in Deionized Water Using Phototautomerization.

Small

January 2025

Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, Hubei, 430078, P. R. China.

Hydrogen peroxide (HO) production through photocatalytic O reduction reaction (ORR) is a mild and cost-efficient alternative to the anthraquinone oxidation strategy. Of note, singlet state oxygen (O) plays a crucial role in ORR. Herein, a hollow TiO@TpPa (TOTP) S-scheme heterojunction by the Schiff base reactions involving 1,3,5-triformylphloroglucinol (Tp) and paraphenylenediamine (Pa) for efficient photocatalytic HO production in deionized water has been developed.

View Article and Find Full Text PDF

Linkage Microenvironment Modulation in Triazine-Based Covalent Organic Frameworks for Enhanced Photocatalytic Hydrogen Peroxide Production.

Small

January 2025

Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.

Covalent organic frameworks (COFs), known for the precise tunability of molecular structures, hold significant promise for photocatalytic hydrogen peroxide (HO) production. Herein, by systematically altering the quinoline (QN) linkages in triazine (TA)-based COFs via the multi-component reactions, six R-QN-TA-COFs are synthesized with identical skeletons but different substituents. The fine-tuning of the optoelectronic properties and local microenvironment of COFs is allowed, thereby optimizing charge separation and improving interactions with dissolved oxygen.

View Article and Find Full Text PDF

Molecular Mechanism of Unexpected Metal-Independent Hydroxyl Radical Production by Mercaptotriazole and HO.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China.

It is well known that hydroxyl radical (OH) can be largely produced either through the classic iron-mediated inorganic-Fenton system or our recently discovered haloquinones/HO organic-Fenton-like system, but rarely produced via thiol compounds. Here, unexpectedly, we found that OH can be unequivocally generated by incubation of HO and mercaptotriazole (MTZ), a typical heterocyclic thiol which has been used as an environmentally friendly corrosion inhibitor for mild steel. By the complementary applications of HPLC-MS and oxygen-18 isotope-labeling method, MTZ-derived sulfenic (MTZ-SOH) and sulfinic acids were detected and identified as transient intermediates, and sulfonic acid as final products.

View Article and Find Full Text PDF

Mitochondria are major sites of reactive oxygen species (ROS) production within cells. ROS are important signalling molecules, but excessive production can cause cellular damage and dysfunction. It is therefore crucial to accurately determine when, how and where ROS are produced within mitochondria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!