Background: The breast cancer susceptibility protein, BRCA1 functions to maintain the integrity of the genome. The exact mechanisms by which it does so, however, remain unclear. The ability of BRCA1 to bind directly to DNA suggests a more direct role. However, little research has been conducted to understand the functional relevance of this characteristic of BRCA1. In this study we examine the DNA substrate specificity of BRCA1 and how this may be controlled by one of its interacting partners, p53.
Methodology/principal Findings: Using competition gel retardation assays we have examined the ability of residues 230-534 of BRCA1 to discriminate between different synthetic DNA substrates that mimic those recognised by the DNA damage response i.e. four-way junction DNA, mismatch containing DNA, bulge containing DNA and linear DNA. Of those tested the highest affinity observed was for four-way junction DNA, with a 20 fold excess of each of the other synthetic DNA's unable to compete for any of the bound BRCA1 230-534. We also observed a higher affinity for C:C and bulge containing DNA compared to linear duplex and G:T containing DNA. BRCA1 230-534 also has interaction sites for the tumour suppressor p53 and we show that titration of this complex into the DNA binding assays significantly reduces the affinity of BRCA1 for DNA.
Conclusions/significance: In this paper we show that BRCA1 can discriminate between different types of DNA damage and we discuss the implications of this with respect to its function in DNA repair. We also show that the DNA binding activity can be inhibited by the tumour suppressor p53 and suggest that this may prevent genome destabilizing events such as HR between non-homologous sequences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2396507 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002336 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!