We investigate the influence of array order in the optical transmission properties of subwavelength hole arrays, by comparing the experimental spectral transmittance of periodic and quasiperiodic hole arrays as a function of frequency. We find that periodicity and long-range order are not necessary requirements for obtaining enhanced and suppressed optical transmission, provided short-range order is maintained. Transmission maxima and minima are shown to result, respectively, from constructive and destructive interference at each hole, between the light incident upon and exiting from a given hole, and surface plasmon polaritons (SPPs) arriving from individual neighboring holes. These SPPs are launched along both illuminated and exit surfaces, by diffraction of the incident and emerging light at the neighboring individual subwavelength holes. By characterizing the optical transmission of a pair of subwavelength holes as a function of hole-hole distance, we demonstrate that a subwavelength hole can launch SPPs with an efficiency up to 35%, and with an experimentally determined launch phase phi = pi /2, for both input-side and exit-side SPPs. This characteristic phase has a crucial influence on the shape of the transmission spectra, determining transmission minima in periodic arrays at those frequencies where grating coupling arguments would instead predict maxima.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.16.009222 | DOI Listing |
Nano Lett
January 2025
Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India.
Structured illumination microscopy (SIM) is a robust wide-field optical nanoscopy technique. Several approaches are implemented to improve SIM's resolution capability (∼2-fold). However, achieving a high resolution with a large field of view (FOV) is still challenging.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China.
Traditional sensors struggle in complex human environments, particularly with humidity and strain detection requiring high sensitivity and robust anti-interference. This work introduces a flexible, miniaturized, low-cost dual-mode sensor that combines a novel resonator structure with a chemically modified conducting polymer, enabling simultaneous strain and humidity detection alongside high anti-interference performance sensitivity and wireless transmission.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, India.
Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA.
Soft electronics, known for their bendable, stretchable, and flexible properties, are revolutionizing fields such as biomedical sensing, consumer electronics, and robotics. A primary challenge in this domain is achieving low power consumption, often hampered by the limitations of the conventional von Neumann architecture. In response, the development of soft artificial synapses (SASs) has gained substantial attention.
View Article and Find Full Text PDFMater Horiz
January 2025
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Solar energy sources have garnered significant attention as a renewable energy option. Despite this, the practical power conversion efficiency (PCE) of widely used silicon-based solar cells remains low due to inefficient light utilization. In this study, carbon dots (APCDs) were prepared a hydrothermal method using ammonium polyphosphate and -phenylenediamine, then incorporated into a silicone-acrylic emulsion (CAS) to create a luminescent down-shifting (LDS) layer for solar cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!