AI Article Synopsis

Article Abstract

We report the extension to a multi-axes exploration of the potential well reconstruction method against drag force to simultaneously characterize the potential wells of several trapping sites generated with holographic optical tweezers. The final result is a robust, fast and automatic procedure we use to characterize holographic tweezers. We mainly focus on the reliability of the method and its application to address the dependence of the diffraction efficiency with the trap position in a given holographic traps pattern.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.16.009011DOI Listing

Publication Analysis

Top Keywords

holographic optical
8
optical tweezers
8
potential well
8
multiple holographic
4
tweezers parallel
4
parallel calibration
4
calibration optical
4
optical potential
4
well characterization
4
characterization report
4

Similar Publications

In recent years, the wine industry has been researching how to improve wine quality along the production value chain. In this scenario, we present here a new tool, MicroVi, a cost-effective chip-sized microscopy solution to detect and count yeast cells in wine samples. We demonstrate that this novel microscopy setup is able to measure the same type of samples as an optical microscopy system, but with smaller size equipment and with automated cell count configuration.

View Article and Find Full Text PDF

Significance: Imaging flow cytometry allows highly informative multi-point cell analysis for biological assays and medical diagnosis. Rapid processing of the imaged cells during flow allows real-time classification and sorting of the cells. Off-axis holography enables imaging flow cytometry without chemical cell staining but requires digital processing to the optical path delay profile for each frame before the cells can be classified, which slows down the overall processing throughput.

View Article and Find Full Text PDF

Optical diffraction tomography using a self-reference module.

Biomed Opt Express

January 2025

Department of Electronic Engineering, Maynooth University, Maynooth, Co. Kildare, Ireland.

Optical diffraction tomography enables label-free, 3D refractive index (RI) imaging of biological samples. We present a novel, cost-effective approach to ODT that employs a modular design incorporating a self-reference holographic capture module. This two-part system consists of an illumination module and a capture module that can be seamlessly integrated with any life-science microscope using an automated alignment protocol.

View Article and Find Full Text PDF

A fair comparison of multiple live cell cultures requires examining them under identical environmental conditions, which can only be done accurately if all cells are prepared simultaneously and studied at the same time and place. This contribution introduces a multiplexed lensless digital holographic microscopy system (MLS), enabling synchronous, label-free, quantitative observation of multiple live cell cultures with single-cell precision. The innovation of this setup lies in its ability to robustly compare the behaviour, i.

View Article and Find Full Text PDF

Computer-generated holography (CGH) is an advanced technology for three-dimensional (3D) displays. While the stochastic gradient descent (SGD) method is effective for holographic optimization, its application to holographic video displays is computationally expensive, as each frame requires separate optimization. To address this, we propose a novel, to the best of our knowledge, clustering optimization strategy to accelerate the SGD process for holographic video displays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!