A new method to retrieve sizes and flutter of ice crystals in the atmosphere when they reveal their preferably horizontal orientation is proposed and realized. The method consists of the measurement of angular width for the specular component of scattered light in the bistatic sounding scheme. The technique is realized with a floodlight beam and a CCD camera as a detector.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.16.007625DOI Listing

Publication Analysis

Top Keywords

specular component
8
component scattered
8
scattered light
8
detection ice
4
ice crystal
4
crystal particles
4
particles preferably
4
preferably oriented
4
oriented atmosphere
4
atmosphere specular
4

Similar Publications

Background: Glaucoma, particularly open-angle glaucoma (OAG), is a leading cause of irreversible blindness, associated with optic nerve damage, retinal ganglion cell death, and visual field defects. Corneal biomechanical properties and cellular components, such as corneal nerve and keratocyte densities assessed by in vivo confocal microscopy (IVCM), may serve as biomarkers for glaucoma progression. This study aimed to explore the relationship between corneal nerve parameters, keratocyte density, and optical coherence tomography (OCT)-derived retinal nerve fiber layer (RNFL) thickness in primary open-angle glaucoma (POAG) patients and controls.

View Article and Find Full Text PDF

This paper presents an effective three-dimensional (3D) surface reconstruction technique aimed at profiling composite surfaces with both specular and diffuse reflectance. Three-dimensional measurements based on fringe projection techniques perform well on diffuse reflective surfaces; however, when the measurement targets contain both specular and diffuse components, the efficiency of fringe projection decreases. To address this issue, the proposed technique integrates digital holography into the fringe projection setup, enabling the simultaneous capture of both specular and diffuse reflected light in the same optical path for full-field surface profilometry.

View Article and Find Full Text PDF
Article Synopsis
  • - The spatial distribution of component species in electroactive film devices is crucial for understanding their performance, influencing both transport rates and mechanical properties.
  • - Specular neutron reflectivity (NR) is a technique that can profile individual species at "buried" interfaces, although it has traditionally had poor time resolution.
  • - This study demonstrates improved NR measurements that allow for spatial and temporal resolution during processes like polypyrrole electrodeposition and copper deposition/dissolution, revealing insights into film homogeneity and complex solvent interactions.
View Article and Find Full Text PDF

The fully analytical polygon-based algorithm is an efficient and precise method for generating holograms. However, the method cannot directly incorporate rendering information. We adopt the framework of the fully analytical polygon-based algorithm and introduce an improved self-similar subdivision model to simplify the computation of pixel normal vectors in the Blinn-Phong lighting model.

View Article and Find Full Text PDF

In this paper, we report a three-dimensional synthetic aperture imaging method with pulsed terahertz waves realized by a terahertz time-domain spectrometer. In contrast to synthetic aperture imaging systems operating at microwave or millimeter-wave frequencies where the frequency of the transmitter is scanned in the frequency domain, in our imaging system, all the frequency components are contained in a single terahertz pulse that can be generated and detected by photoconductive antennas. The image algorithm was analyzed theoretically and confirmed numerically using the finite-difference time-domain method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!