We present an experimental method for direct analysis of guided-mode resonances in photonic crystal slab structures using transmission measurements. By positioning the photonic crystal slab between orthogonally oriented polarization filters light transmission is suppressed except for the guided-mode resonances. Angle resolved transmission measurements with crossed polarizers are performed to obtain the band structure around the Gamma-point. Results are compared to mode simulations. Spatially resolved measurements in a confocal microscope setup are used for homogeneity characterizations. Stitching errors and inhomogeneities in exposure dose down to 1.3% in photonic crystal slabs fabricated by electron beam lithography are observed using this method.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.16.007153DOI Listing

Publication Analysis

Top Keywords

photonic crystal
16
crystal slabs
8
orthogonally oriented
8
oriented polarization
8
polarization filters
8
guided-mode resonances
8
crystal slab
8
transmission measurements
8
optical characterization
4
photonic
4

Similar Publications

Electrically Switchable Multi-Stable Topological States Enabled by Surface-Induced Frustration in Nematic Liquid Crystal Cells.

Adv Mater

January 2025

Liquid Crystals and Photonics Group, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium.

In liquid crystal (LC) cells, the surface patterning directs the self-assembly of the uniaxial building blocks in the bulk, enabling the design of stimuli-response optical devices with various functionalities. The combination of different anchoring patterns at both substrates can lead to surface induced frustration, preventing a purely planar and defect-free configuration. In cells with crossed assembly of rotating anchoring patterns, elastic deformations allow to obtain a defect-free bulk configuration, but an electrical stimulus can induce disclination lines.

View Article and Find Full Text PDF

Multifunctional Organic Molecule for Defect Passivation of Perovskite for High-Performance Indoor Solar Cells.

Materials (Basel)

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.

Perovskite solar cells (PSCs) can utilize the residual photons from indoor light and continuously supplement the energy supply for low-power electron devices, thereby showing the great potential for sustainable energy ecosystems. However, the solution-processed perovskites suffer from serious defect stacking within crystal lattices, compromising the low-light efficiency and operational stability. In this study, we designed a multifunctional organometallic salt named sodium sulfanilate (4-ABS), containing both electron-donating amine and sulfonic acid groups to effectively passivate the positively-charged defects, like under-coordinated Pb ions and iodine vacancies.

View Article and Find Full Text PDF

The application of temperature-compensated photonic device is hampered by poor accuracy and overly simplistic functions of propagation in photonic integrated circuits (PICs) field. Herein, we report a new library of donor-acceptor metal-organic framework (D-A MOF) with thermally activated delayed fluorescence (TADF) and the fabricating of temperature-compensated photonic device by virtue of the unique temperature response character of TADF emitters. Highly tunable through-space charge transfer (TSCT) of TADF was realized within the D-A MOFs through a novel strategy that synergistically combines the internal heavy atom effect (HAE) with an external HAE, induced by the incorporation of heavy atoms into different components, achieving the regulable photophysical indicators including adjustable PL wavelength (534 to 592 nm) and surging quantum yield (5.

View Article and Find Full Text PDF

All-perovskite tandem solar cells achieving >29% efficiency with improved (100) orientation in wide-bandgap perovskites.

Nat Mater

January 2025

National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China.

Monolithic all-perovskite tandem solar cells present a promising approach for exceeding the efficiency limit of single-junction solar cells. However, the substantial open-circuit voltage loss in the wide-bandgap perovskite subcell hinders further improvements in power-conversion efficiency. Here we develop wide-bandgap perovskite films with improved (100) crystal orientation that suppress non-radiative recombination.

View Article and Find Full Text PDF

Continuous-wave perovskite polariton lasers.

Sci Adv

January 2025

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China.

Solution-processed semiconductor lasers are next-generation light sources for large-scale, bio-compatible and integrated photonics. However, overcoming their performance-cost trade-off to rival III-V laser functionalities is a long-standing challenge. Here, we demonstrate room-temperature continuous-wave perovskite polariton lasers exhibiting remarkably low thresholds of ~0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!