The influence of oceanic constituents on the polarized reflectance measured at the top of atmosphere (TOA) over open ocean waters in one visible band is investigated. First, radiative transfer modelling is used to quantify the effects of biomass concentration on the TOA polarized signal for a wide range of observation geometries. The results showed that the TOA polarized reflectance remains insensitive to variations in the chlorophyll a concentration whatever the geometrical conditions in oligotrophic and mesotrophic waters, which represent about 90% of the global ocean. The invariance of the polarized signal with water content is explained by the prevailing influence of both atmospheric effects and skylight reflections at the sea surface on the polarization state of the radiation reaching the top of atmosphere level. The simulations also revealed that multidirectional and polarized TOA reflectances obtained in the visible spectrum are powerful tools for the discrimination between the aerosol optical properties. In the second part of the paper, the theoretical results are rigorously validated using original multiangle and polarized measurements acquired by PARASOL satellite sensor, which is used for the first time for ocean color purposes. First, a statistical analysis of the geometrical features of PARASOL instrument showed that the property of invariance of the TOA polarized reflectance is technically verified for more than 85% of viewed targets, and thus, indicating the feasibility of separating between the atmospheric and oceanic parameters from space remotely sensed polarized data. Second, PARASOL measurements acquired at regional and global scales nicely corroborated the simulations. This study also highlighted that the radiometric performance of the polarized visible wavelength of PARASOL satellite sensor can be used either for the aerosol detection or for atmospheric correction algorithms over open ocean waters regardless of the biomass concentration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.16.006064 | DOI Listing |
Mater Horiz
January 2025
School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China.
Realizing spin-orbit torque (SOT)-driven magnetization switching offers promising opportunities for the advancement of next-generation spintronics. However, the relatively low charge-spin conversion efficiency accompanied by an ultrahigh critical switching current density () remains a significant obstacle to the further development of SOT-based storage elements. Herein, spin absorption engineering at the ferromagnet/nonmagnet interface is firstly proposed to achieve high SOT efficiency in Pt/Co/Ir trilayers.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
MnO octahedra without distortions in α-MnO have a low dipole content, which limits their dielectric loss capabilities. Herein, we develop protonated MnO with distorted MnO octahedra for increased dipole numbers a two-step hydrothermal method. In comparison with α-MnO, this protonated MnO provides greatly improved dipole polarization loss capabilities, resulting in a reflection loss value of -19.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China.
The design and fabrication of high-performance electromagnetic wave (EMW) absorbing materials are essential in developing electronic communication technology for defense and civilian applications. These materials function by interacting with EMWs, creating various effects such as polarization relaxation, magnetic resonance, and magnetic hysteresis in order to absorb EMWs. Significant progress has been made to improve the dimensional performance of such materials, emphasizing the 'thin, light, broad, and strong' functional specifications.
View Article and Find Full Text PDFJ Fish Biol
January 2025
Polar branch of the Russian Federal Research Institute of Fisheries and Oceanography ("PINRO" named after N.M. Knipovich), Murmansk, Russia.
More than 27,000 stomachs from 70 species of fish were collected from the Barents Sea in 2015. Quantitative stomach content expressed relative to the body weight of the predator fish (g g as %) varied by four to five orders of magnitude for six species with the largest sample size (Atlantic cod Gadus morhua, haddock Melanogrammus aeglefinus, Greenland halibut Reinhardtius hippoglossoides, long rough dab Hippoglossoides platessoides, polar cod Boreogadus saida, and Atlantic capelin Mallotus villosus). The quantitative stomach contents of individual fish followed a common and strict statistical relationship for predator species or groups of species (by families), and for prey categories across predator species.
View Article and Find Full Text PDFEnviron Res
January 2025
Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3, Canada. Electronic address:
Metabolomics measures low molecular weight endogenous metabolites and changes linked to contaminant exposure in biota. Few studies have explored the relationship between metabolomics and contaminants in Arctic wildlife. We analyzed 239 endogenous metabolites and ∼150 persistent organic pollutants (POPs), including total mercury (THg), in the liver of polar bears and their ringed seal prey harvested from low Canadian Arctic (western Hudson Bay; WHB) and high Arctic (HA) locations during 2015-2016.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!