Methods of modifying the human genome precisely and efficiently hold great promise for revolutionizing the gene therapy arena. One particularly promising technology is based on the homologous recombination (HR) pathway and is known as gene targeting. Until recently, the low frequency of HR in mammalian cells, and the resulting dependence on selection to identify these rare events, has prevented gene targeting from being applied in a therapeutic context. However, recent advances in generating customized zinc-finger nucleases (ZFNs) that can create a DNA double-strand break (DSB) at preselected sites in the human genome have paved the way for HR-based strategies in gene therapy. By introducing a DSB into a target locus of interest, ZFNs stimulate gene targeting by several orders of magnitude through activation of cellular DNA repair pathways. The capability of this technology to achieve gene conversion frequencies of up to 29% in the absence of selection demonstrates its potential power. In this paper we review recent advances in, and upcoming challenges for, this emerging technology and discuss future experimental work that will be needed to bring ZFNs safely into a clinical setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/mt.2008.114 | DOI Listing |
PLoS One
January 2025
Cummings School of Veterinary Medicine at Tufts University, Department of Infectious Diseases and Global Health, North Grafton, MA, United States of America.
Glucocorticosteroids remain the most common pharmaceutical approach for the treatment of equine asthma but can be associated with significant side effects, including respiratory microbiome alterations. The goal of the study was to assess the impact of 2% lidocaine nebulization, a projected alternative treatment of equine asthma, on the healthy equine respiratory microbiota. A prospective, randomized, controlled, blinded, 2-way crossover study was performed, to assess the effect of 1 mg/kg 2% lidocaine (7 treatments over 4 days) on the equine respiratory microbiota compared to control horses (saline and no treatment).
View Article and Find Full Text PDFDiabetes
January 2025
Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
Many cell types are involved in the regulation of cutaneous wound healing in diabetes. Clarifying the mechanism of cell-cell interactions is important for identifying therapeutic targets for diabetic cutaneous ulcers. The function of vascular endothelial cells in the cutaneous microenvironment is critical, and a decrease in their biological function leads directly to refractory wound healing.
View Article and Find Full Text PDFIUBMB Life
January 2025
Department of Pathology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Shandong Institute of Nephrology, Jinan, China.
Clear cell renal cell carcinoma (KIRC) is the most prevalent subtype of renal cell carcinoma (RCC), accounting for 70% to 80% of all RCC cases. The CRYAB (αB-crystallin) gene is broadly expressed across various human tissues, yet its role in KIRC progression remains unclear. This study aims to elucidate the function of CRYAB in KIRC progression and to assess its potential as a biomarker for early diagnosis, therapeutic targeting, and prognosis.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Biology and Biochemistry PhD Programs, Graduate Center, City University of New York, New York, New York, United States.
Purpose: Retinal development in the mouse continues past birth and provides a widely used model system in which photoreceptor formation can be observed and manipulated. This experimental paradigm provides opportunities for both gain-of-function and loss-of-function studies, which can be accomplished through in vivo or ex vivo plasmid delivery and electroporation. However, the cis-regulatory elements used to implement this approach have not been fully evaluated or optimized for the unique transcriptional environment of photoreceptors.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
Recipients often suffer from hyperlactatemia during liver transplantation (LT), but whether hyperlactatemia exacerbates hepatic ischemia-reperfusion injury (IRI) after donor liver implantation remains unclear. Here, the role of hyperlactatemia in hepatic IRI is explored. In this work, hyperlactatemia is found to exacerbate ferroptosis during hepatic IRI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!