To elucidate the pathophysiological significance of adenosine 3'-monophosphate (3'-AMP) forming enzyme in mice, the effect of streptozotocin (STZ) on the enzyme activities and adenine nucleotide levels in the ICR mice (4-week-old) liver was examined. After 2 weeks, treatment with a single dosage of STZ (100, 150 or 200 mg/kg i.p.) induced a dose-dependent hyperglycemia and hypoinsulinemia but had no effect on serum alanine aminotransferase activity, indicating that STZ generated type 1 diabetes without hepatitis. In the diabetic liver, the activities of superoxide dismutase (SOD), catalase and ATP levels decreased, and the microsomal CYP2E1 activity increased. Changes of these biological activities might disrupt the cellular homeostatic balance of reactive oxygen species (ROS) production. The activities of 3'-AMP forming enzyme, one of the ribonucleases, in hepatic homogenates were not altered. However, in the STZ 200 mg/kg group, the cytosolic forming enzyme activities were enhanced, and inversely, the mitochondrial activity was reduced significantly, indicating that the decrease in the mitochondrial activity may be accelerated by development of diabetes due to the decrease in the antioxidant defense system and/or increase in ROS production. With the decrease in the 3'-AMP forming enzyme activity, the levels of 3'-AMP, a P-site inhibitor of adenylate cyclase, in mitochondrial were significantly reduced. These results obtained suggested that change in the mitochondrial 3'-AMP forming enzyme activity might reflect the pathophysiological change of mitochondrial function with the development of diabetes. Our results also suggested that change in cytosolic enzyme activity might serve as a new biomarker of oxidative stress because significant negative correlation between the activities of cytosolic 3'-AMP forming enzyme and SOD was found in the early stage of diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2131/jts.33.209 | DOI Listing |
Mol Microbiol
January 2025
Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil.
Leishmania presents a complex life cycle that involves both invertebrate and vertebrate hosts. By regulating gene expression, protein synthesis, and metabolism, the parasite can adapt to various environmental conditions. This regulation occurs mainly at the post-transcriptional level and may involve epitranscriptomic modifications of RNAs.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China. Electronic address:
Theaflavins, oxidation product of tea polyphenols, have demonstrated significant inhibitory effects on α-glucosidase, which is beneficial in alleviating hyperglycemia. This study found that the inhibition of four monomers of theaflavins on α-glucosidase was related to the presence of the galloyl moiety (GM), with IC values ranging from TFDG (0.26 mg/mL) < TF3'G (0.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005-Paris, France.
The understanding of glycans, the third life chain, is widely desired. Naturally, the glycoconjugates are found in heterogeneous forms due to the enzyme competition in the same process. As a result, the synthesis of homogeneous glycans has become one of the trending research topics.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Hebei Agricultural University, Baoding, China.
Background: Nitrogen (N) deposition has become a major driving factor affecting the balance of terrestrial ecosystems, changing the soil environment, element balance and species coexistence relationships, driving changes in biodiversity and ecosystem structure and function. Human-induced nitrogen input leads to a high NH/ NO ratio in soil. However, relatively few studies have investigated the effects of different nitrogen sources on forest plant-microbial symbionts.
View Article and Find Full Text PDFNat Plants
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
Plant cuticular waxes serve as highly responsive adaptations to variable environments. Aliphatic waxes consist of very-long-chain (VLC) compounds produced from 1-alcohol- or alkane-forming pathways. The existing variation in 1-alcohols and alkanes across Arabidopsis accessions revealed that 1-alcohol amounts are negatively correlated with aridity factors, whereas alkanes display the opposite behaviour.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!