Association of tetraspanin CD9 with transmembrane TGF{alpha} confers alterations in cell-surface presentation of TGF{alpha} and cytoskeletal organization.

J Cell Sci

Department of Cell and Tissue Biology, Program in Cell Biology, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.

Published: July 2008

Ligand presentation is a major determinant of receptor activation. The epidermal growth factor receptor (EGFR), a tyrosine kinase receptor, is activated by growth factors of the transforming growth factor alpha (TGFalpha) family. The tetraspanin CD9 interacts with transmembrane TGFalpha and decreases its ectodomain shedding to release soluble TGFalpha. Here we report that CD9 has a role in the maturation of transmembrane TGFalpha and its stabilization at the cell surface, and in the cell-surface distribution in polarized epithelial cells. Furthermore, coexpression of CD9 and TGFalpha confers changes in cytoskeletal organization with a decrease in actin stress fibers and focal adhesions, and changes in RhoA and Rac1 GTPase activity. These alterations are reversed by blocking EGFR signaling. Finally, we demonstrate changes in cell adhesion and migration resulting from coexpression of TGFalpha with CD9. These results provide insight into the role of CD9 in the presentation of TGFalpha in epithelial and carcinoma cells, whose physiology is driven by ligand-induced EGFR activation.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.021717DOI Listing

Publication Analysis

Top Keywords

tetraspanin cd9
8
cytoskeletal organization
8
growth factor
8
transmembrane tgfalpha
8
tgfalpha
7
cd9
6
association tetraspanin
4
cd9 transmembrane
4
transmembrane tgf{alpha}
4
tgf{alpha} confers
4

Similar Publications

Dual-target magneto-immunoassay with bifunctional nanohybrids for breast cancer exosome detection.

Talanta

January 2025

Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State, 54896, Republic of Korea; School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State, 54896, Republic of Korea. Electronic address:

Exosomes, crucial for intercellular communication, hold potential as noninvasive liquid biopsy biomarkers especially in early breast cancer detection benefitted from the distinctive "cancer signature" on their membrane surface. Yet, the present methodologies of exosomes for breast cancer detection have involved the implementation of only a single member from the tetraspanin protein group as a biomarker. Moreso, due to the high concentration of exosomes in complex body fluids, there is a compelling need to measure a small concentration of cancer-derived exosomes with a low background noise signal.

View Article and Find Full Text PDF

Background/objectives: Exosomes, nano-sized extracellular vesicles released by all cells, play a key role in intercellular communication and carry tumorigenic properties that impact surrounding or distant cells. The complexity of the exosomal molecular interactome and its effects on recipient cells still remain unclear. This study aims to decipher the molecular profile and interactome of lung adenocarcinoma A549 cell-derived exosomes using multi-omics and bioinformatics approaches.

View Article and Find Full Text PDF

Disruption of gamete fusion alters the sperm-egg ratio at gamete interaction.

J Transl Med

December 2024

Department of Biological Science, University of Tulsa, Tulsa, Oklahoma, USA.

Background: The mechanisms enabling sperm to locate unfertilized eggs within the fallopian tubes remain a subject of debate in reproductive biology. Previous studies using polytocous mammals observed a 1:1 sperm-egg ratio within the ampulla at the time of fertilization. From these observations, it is hypothesized that this mechanism could be linked to sperm-egg fusion, such that unfertilized eggs may attract sperm until fusion occurs, whereupon the attraction ceases.

View Article and Find Full Text PDF
Article Synopsis
  • Osteoarthritis (OA) is common and currently lacks effective treatments that can both modulate the immune response and repair cartilage, prompting research into extracellular vesicles (EVs) from blood-derived products like platelet poor plasma (PPP).
  • This study examined how PPP-derived EVs affect OA chondrocytes in a lab setting, revealing that these EVs possess anti-inflammatory properties and can significantly reduce the expression of certain inflammatory genes associated with OA.
  • The findings suggest that PPP-EVs can potentially be developed as a new type of treatment for OA, offering promise for better management of the disease in the future.
View Article and Find Full Text PDF

Intercellular communication via extracellular vesicles (EVs) has been identified as a vital component of a steadily expanding number of physiological and pathological processes. To accommodate these roles, EVs have highly heterogeneous molecular compositions. Given that surface molecules on EVs determine their interactions with their environment, EV functionality likely differs between subpopulations with varying surface compositions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!