Differential growth factor regulation of N-cadherin expression and motility in normal and malignant oral epithelium.

J Cell Sci

Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.

Published: July 2008

Aberrant expression of N-cadherin is associated with tumor progression in squamous cell carcinomas (SCCs). Consequently, we examined the regulation of N-cadherin by TGFbeta1, an important mediator of keratinocyte and SCC function. N-cadherin expression was increased in oral SCC (OSCC) cell lines, regulating motility and correlating with TGFbeta1 production. Moreover, in normal keratinocytes TGFbeta1 increased expression of N-cadherin to regulate motility. TGFbeta1-mediated N-cadherin expression in the oral keratinocytes was blocked using siRNA targeting Smads. Unexpectedly, we found that EGF blocked TGFbeta1-mediated N-cadherin expression in oral keratinocytes and not in OSCC cells. Mechanistically, EGF enhanced Smad phosphorylation in the linker region, and attenuated TGFbeta1-mediated phosphorylation of Smad at the C-terminus, localization of Smad to the nucleus as well as Smad-driven promoter activity exclusively in oral keratinocytes but not in OSCC cells. The effect of EGF on TGFbeta1-mediated Smad-driven promoter activity and N-cadherin expression was reversed when activation of ERK1/2 was blocked. Although EGF and TGFbeta1 independently promoted migration of both oral keratinocytes and OSCC cells, EGF decreased TGFbeta1-mediated migration of oral keratinocytes but enhanced migration of OSCC cells. Together, these data support a model wherein EGF signaling has an important negative regulatory role on TGFbeta1-mediated N-cadherin expression and motility in normal oral keratinocytes, and in which loss of this regulatory mechanism accompanies malignant transformation of the oral epithelium.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.021782DOI Listing

Publication Analysis

Top Keywords

n-cadherin expression
24
oral keratinocytes
24
oscc cells
16
tgfbeta1-mediated n-cadherin
12
keratinocytes oscc
12
n-cadherin
9
oral
9
regulation n-cadherin
8
expression
8
expression motility
8

Similar Publications

Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.

View Article and Find Full Text PDF

The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear.

View Article and Find Full Text PDF

Bisphenol A-Induced Cancer-Associated Adipocytes Promotes Breast Carcinogenesis Via CXCL12/AKT Signaling.

Mol Cell Endocrinol

January 2025

Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China. Electronic address:

Bisphenol A (BPA), a commonly used plastic additive, is believed to cause obesity. As an environmental endocrine disruptor, BPA is closely associated with the onset and progression of BC. However, the molecular mechanisms underlying the promotion of breast cancer by BPA remain unclear.

View Article and Find Full Text PDF

Environmental Exposure to Bisphenol A Enhances Invasiveness in Papillary Thyroid Cancer.

Int J Mol Sci

January 2025

Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.

Bisphenol A (BPA) is a prevalent environmental contaminant found in plastics and known for its endocrine-disrupting properties, posing risks to both human health and the environment. Despite its widespread presence, the impact of BPA on papillary thyroid cancer (PTC) progression, especially under realistic environmental conditions, is not well understood. This study examined the effects of BPA on PTC using a 3D thyroid papillary tumor spheroid model, which better mimicked the complex interactions within human tissues compared to traditional 2D models.

View Article and Find Full Text PDF

Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths globally, with a persistently low five-year survival rate of only 14-17%. High rates of metastasis contribute significantly to the poor prognosis of NSCLC, in which inflammation plays an important role by enhancing tumor growth, angiogenesis, and metastasis. Targeting inflammatory pathways within cancer cells may thus represent a promising strategy for inhibiting NSCLC metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!