AI Article Synopsis

Article Abstract

Dysregulation of protein synthesis has been implicated in oncogenesis through a mechanism whereby "weak" mRNAs encoding proteins involved in cell proliferation are strongly translated when the protein synthesis apparatus is activated. Previous work has determined that many cancer cells contain high levels of eIF3h, a protein subunit of translation initiation factor eIF3, and overexpression of eIF3h malignantly transforms immortal NIH-3T3 cells. This is a general feature of eIF3h, as high levels also affect translation, proliferation, and a number of malignant phenotypes of CHO-K1 and HeLa cells and, most significantly, of a primary prostate cell line. Furthermore, overexpressed eIF3h inhibits Myc-dependent induction of apoptosis of primary prostate cells. eIF3h appears to function through translation, as the initial appearance of overexpressed eIF3h in rapidly induced NIH-3T3 cells correlates tightly with the stimulation of protein synthesis and the generation of malignant phenotypes. This oncogenic potential of eIF3h is enhanced by phosphorylation at Ser(183). Finally, reduction of eIF3h levels in breast and prostate cancer cell lines by short interfering RNA methods reduces their rates of proliferation and anchorage-independent growth in soft agar. The results provide compelling evidence that high eIF3h levels directly stimulate protein synthesis, resulting in the establishment and maintenance of the malignant state in cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2527115PMC
http://dx.doi.org/10.1074/jbc.M800956200DOI Listing

Publication Analysis

Top Keywords

protein synthesis
16
eif3h
9
translation initiation
8
initiation factor
8
factor eif3
8
high levels
8
nih-3t3 cells
8
malignant phenotypes
8
primary prostate
8
overexpressed eif3h
8

Similar Publications

The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus-HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)-, to study betacoronavirus interactions with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation.

View Article and Find Full Text PDF

A Comprehensive Review of the Development and Therapeutic Use of Antivirals in Flavivirus Infection.

Viruses

January 2025

Department of Microbiology and Immunology, Miller School of Medicine, University of Miami/UHealth, Miami, FL 33136, USA.

Flaviviruses are a diverse group of viruses primarily transmitted through hematophagous insects like mosquitoes and ticks. Significant expansion in the geographic range, prevalence, and vectors of flavivirus over the last 50 years has led to a dramatic increase in infections that can manifest as hemorrhagic fever or encephalitis, leading to prolonged morbidity and mortality. Millions of infections every year pose a serious threat to worldwide public health, encouraging scientists to develop a better understanding of the pathophysiology and immune evasion mechanisms of these viruses for vaccine development and antiviral therapy.

View Article and Find Full Text PDF

De novo synthesis of phage genomes enables flexible genome modification and simplification. This study explores the synthetic genome assembly of phage vB_PaeS_SCUT-S4 (S4), a 42,932 bp headful packaging phage, which encapsidates a terminally redundant, double-stranded DNA genome exceeding unit length. We demonstrate that using the yeast TAR approach, the S4 genome can be assembled and rebooted from a unit-length genome plus a minimal 60 bp terminal redundant sequence.

View Article and Find Full Text PDF

In this study, we revealed a critical role of eukaryotic elongation factor-2 kinase (eEF-2K), a negative regulator of protein synthesis, in regulating T cells during vaccinia virus (VACV) infection. We found that eEF-2K-deficient (eEF-2K⁻/⁻) mice exhibited a significantly higher proportion of VACV-specific effector CD8 T cells without compromising the development of VACV-specific memory CD8 T cells. RNA sequencing demonstrated that eEF-2K⁻/⁻ VACV-specific effector CD8 T cells had enhanced functionality, which improves their capacity to combat viral infection during the effector phase.

View Article and Find Full Text PDF

(L.) DC., commonly known as Japanese pepper, is a deciduous shrub native to East Asia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!