A biosensor of lactate has been constructed, made, and tested. The lactate biosensor uses the lactate dehydrogenase molecules from muscle. The lactate biosensor works according to the simplest scheme. An immobilized lactate dehydrogenase molecule binds a L-lactate molecule in the absence of the coenzyme NAD+. Then the L-lactate molecule is oxidized by the electric field of a metal electrode of the biosensor to generate an electron. The transfer of this electron between the immobilized lactate dehydrogenase molecule and the metal electrode of the biosensor is carried out without a redox mediator molecule. A new mechanism for the energy supply of the enzyme molecule is proposed to explain this effect. The new mechanism is based on the electric dipole-dipole interactions occurring in the enzyme molecule and surrounding water and on the thermal energy of this water.
Download full-text PDF |
Source |
---|
Sci Rep
January 2025
ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India.
The fishmeal is boon for aquaculture production in this recent pollution and climate change era. However, the demand of fishmeal is enhancing in many folds which needs to find alternative to fishmeal in cheap price. The present investigation addresses these issues with quinoa husk (QH).
View Article and Find Full Text PDFMar Pollut Bull
January 2025
ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115, India.
Contaminants are a major cause of seafood export rejections in foreign markets and have significantly impacted consumer health. This investigation addresses the issues of metal contamination and biochemical markers in Litopenaeus vannamei from East Midnapore, West Bengal, India. The analyzed metals included vanadium (V), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), molybdenum (Mo), silver (Ag), gallium (Ga), germanium (Ge), arsenic (As), selenium (Se), strontium (Sr), tin (Sn), cadmium (Cd), mercury (Hg), and lead (Pb), using Inductively Coupled Plasma Mass Spectrometry (ICP-MS).
View Article and Find Full Text PDFSports Med Health Sci
March 2025
Sports and Exercise Physiology Laboratory, Department of Physiology, University of Calcutta, University Colleges of Sciences and Technology, 92 A.P.C. Road, Kolkata, 700009, India.
The present investigation examined the influence of age and pubertal transition on magnitude of muscle damage and inflammatory response following high intensity incremental treadmill running till volitional exhaustion in sixty-four sedentary prepubertal ( = 32) and postpubertal ( = 32) boys who were randomly recruited in the study. Muscle damage and inflammatory markers like creatine kinase (CK), lactate dehydrogenase (LDH), alanine aminotransferase (ALT), aspartate aminotranferase (AST), C-Reactive Protein (CRP) and Interleukin-6 (IL-6) were estimated before and after exercise. Serum CK, LDH, AST, ALT, CRP and IL-6 levels significantly increased after exercise in both the groups in comparison to respective pre-exercise values.
View Article and Find Full Text PDFNat Metab
January 2025
Department of Bioengineering, University of California, University of California, San Diego, La Jolla, CA, USA.
The Warburg effect, which describes the fermentation of glucose to lactate even in the presence of oxygen, is ubiquitous in proliferative mammalian cells, including cancer cells, but poses challenges for biopharmaceutical production as lactate accumulation inhibits cell growth and protein production. Previous efforts to eliminate lactate production in cells for bioprocessing have failed as lactate dehydrogenase is essential for cell growth. Here, we effectively eliminate lactate production in Chinese hamster ovary and in the human embryonic kidney cell line HEK293 by simultaneous knockout of lactate dehydrogenases and pyruvate dehydrogenase kinases, thereby removing a negative feedback loop that typically inhibits pyruvate conversion to acetyl-CoA.
View Article and Find Full Text PDFChin J Integr Med
January 2025
Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
Objective: To explore the molecular mechanism of Shenmai Injection (SMI) against doxorubicin (DOX) induced cardiomyocyte apoptosis.
Methods: A total of 40 specific pathogen-free (SPF) male Sprague Dawley (SD) male rats were divided into 5 groups based on the random number table, including the control group, the model group, miR-30a agomir group, SMI low-dose (SMI-L) group, and SMI high-dose (SMI-H) group, with 8 rats in each group. Except for the control group, the rats were injected weekly with DOX (2 mg/kg) in the tail vein for 4 weeks to induce myocardial injury, and were given different regimens of continuous intervention for 2 weeks.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!