Green macroalgal blooms have substantially altered marine community structure and function, specifically by smothering seagrasses and other primary producers that are critical to commercial fisheries and by creating anoxic conditions in enclosed embayments. Bottom-up factors are viewed as the primary drivers of these blooms, but increasing attention has been paid to biotic controls of species composition. In Washington State, USA, blooms are often dominated by Ulva spp. intertidally and Ulvaria obscura subtidally. Factors that could cause this spatial difference were examined, including competition, grazer preferences, salinity, photoacclimation, nutrient requirements, and responses to nutrient enrichment. Ulva specimens grew faster than Ulvaria in intertidal chambers but not significantly faster in subtidal chambers. Ulva was better able to acclimate to a high-light environment and was more tolerant of low salinity than Ulvaria. Ulvaria had higher tissue N content, chlorophyll, chlorophyll b: chlorophyll a, and protein content than Ulva. These differences suggest that nitrogen availability could affect species composition. A suite of five grazers preferred Ulva to Ulvaria in choice experiments. Thus, bottom-up factors allow Ulva to dominate the intertidal zone while resistance to grazers appears to allow Ulvaria to dominate the subtidal zone. While ulvoid algae are in the same functional-form group, they are not functionally redundant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/07-0494.1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!