The effects of perturbations of whispering gallery modes (WGMs) in cylindrical microcavities by embedded particles are studied by FDTD modeling. The principal effects are: i) spectral shift of the WGM-related peaks caused by the variation of the average index, ii) broadening of the WGM peaks introduced by the scattering, and iii) splitting of the WGM peaks due to formation of symmetric (SSW) and antisymmetric (ASW) standing waves. The focus of this work is on the last effect. We show that it can be maximized by placing the nanoparticle inside the cavity at a position corresponding to the antinode of the radial distribution of intensity of WGM. It is demonstrated that in this case the magnitude of splitting reaches several angstroms for cavities with moderately high quality (Q approximately = 10(5)) WGMs. We show that for relatively small particles with radius <70 nm and index contrasts <0.2 the magnitude of SSW/ASW splitting is linearly dependent on the size and index of the nanoparticle. This allows developing biomolecular sensors based on measuring this splitting in porous cavities. It is predicted that a similar effect of splitting can occur in semiconductor microdisks and pillars where the role of embedded dielectric nanoparticles can be played by self-assembled quantum dots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.16.005421 | DOI Listing |
Non-Hermitian systems offer a compelling platform for enhancing sensitivity in measurement applications. Here, we propose a multimode non-Hermitian optical configuration comprising three coupled whispering-gallery-mode microcavities and a waveguide. The transmission spectrum of the configuration reveals valleys influenced by zeros and poles of polynomial ratios and can exhibit higher-order scattering zeros.
View Article and Find Full Text PDFAdv Mater
November 2024
Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR, 999078, China.
The development of a lasing wavelength switch, particularly from a single inorganic gain material, is challenging but highly demanded for advanced photonics. Nonetheless, all current lasing emission of inorganic gain materials arises from band-edge states, and the inherent fixed bandgap limitation of the band-edge system leads to the inaccessibility of lasing wavelength switching from a single inorganic gain material. Here the realization of a single inorganic gain material-based lasing wavelength switch is reported by proposing an alternative lasing emission strategy, that is, lasing emission from surface gain.
View Article and Find Full Text PDFAppl Spectrosc
June 2024
Lawrence Livermore National Laboratory, Livermore, California, USA.
Whispering gallery mode resonator sensors are nondisruptive optical sensors that can detect and monitor perturbations in a gaseous environment. Through its resonant properties of peak wavelength, amplitude, and quality factor (Q factor), changes in concentration can be quantified within seconds and monitored over days with great stability. In addition, the small footprint, low cost, and high sensitivity are ideal properties for a disposable sensor that can be utilized in extreme environments.
View Article and Find Full Text PDFIn this paper, dielectric Cavity-Resonant Integrated-Grating Filters (CRIGFs) are numerically optimized to achieve extremely high-quality factors, by optimizing the cavity in/out-coupling rate and by introducing apodizing mode-matching sections to reduce scattering losses. Q-factors ranging between 0.1 and 50 million are obtained and two different domains are distinguished, as a function of the perturbation parameter which controls the cavity in/out-coupling rate.
View Article and Find Full Text PDFWhispering-gallery-mode (WGM) microcavities have shown significant applications in nanoparticle sensing for environmental monitoring and biological analysis. However, the enhancement of detection resolution often calls for active cavities or elaborate structural designs, leading to an increase of fabrication complexity and cost. Herein, heterodyne amplification is implemented in WGM microsensors based on backscattering detection mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!