Characteristics of the Brillouin spectra in Erbium-Ytterbium fibers.

Opt Express

ONERA,DOTA, Chemin de la Hunière, 91761 Palaiseau CEDEX France.

Published: March 2008

This paper reports the main characteristics of the Stokes spectra for typical pumped and unpumped Erbium-Ytterbium doped fibers. Doped fibers show shorter Brillouin shifts and their spectra are up to 1.6 times broader than undoped fibers. Those spectra are composed of several peaks originating from several longitudinal acoustic modes. The effective Brillouin gain of the secondary modes can be as large as 20% of the main peak gain. They can merge into a more complex structure for the largest cores. Simulations allow to relate these characteristics to the influence of codoping and index profile inhomogeneity. An additional broadening of the Stokes spectrum in pumped fibers is reported and attributed to thermal effects.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.16.003212DOI Listing

Publication Analysis

Top Keywords

doped fibers
8
fibers
5
characteristics brillouin
4
spectra
4
brillouin spectra
4
spectra erbium-ytterbium
4
erbium-ytterbium fibers
4
fibers paper
4
paper reports
4
reports main
4

Similar Publications

Pseudomorphic Transformation in Nanostructured Thiophene-Based Materials.

ACS Nano

January 2025

Consiglio Nazionale delle Ricerche (CNR) - Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129 Bologna, Italy.

This study reveals the capability of nanostructured organic materials to undergo pseudomorphic transformations, a ubiquitous phenomenon occurring in the mineral kingdom that involves the replacement of a mineral phase with a new one while retaining the original shape and volume. Specifically, it is demonstrated that the postoxidation process induced by HOF·CHCN on preformed thiophene-based 1D nanostructures preserves their macro/microscopic morphology while remarkably altering their electro-optical properties by forming a new oxygenated phase. Experimental evidence proves that this transformation proceeds via an interface-coupled dissolution-precipitation mechanism, leading to the growth of a porous oxidized shell that varies in thickness with exposure time, enveloping the pristine smooth core.

View Article and Find Full Text PDF

Li metal batteries (LMBs), particularly with a limited Li metal anode and a 5V-class cathode, offer significantly higher energy density compared to the state-of-the-art Li-ion batteries. However, the limited Li anode poses severe challenges to cycling stability due to low efficiency and large volume expansion issues associated with Li. Herein, we design a lightweight and functionalized host composed of Sn nanoparticles embedded into necklace-like B,N,F-doped carbon macroporous fibers (Sn@B/N/F-CMFs) toward anode-less 5V-class LMBs.

View Article and Find Full Text PDF

Flexible Phase Change Materials with High Energy Storage Density Based on Porous Carbon Fibers.

Polymers (Basel)

December 2024

Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.

Phase change fibers (PCFs) can effectively store and release heat, improve energy efficiency, and provide a basis for a wide range of energy applications. Improving energy storage density and preserving flexibility are the primary issues in the efficient manufacture and application development of PCFs. Herein, we have successfully fabricated a suite of flexible PCFs with high energy storage density, which use hollow carbon fibers (HCFs) encapsulated phase change materials (PCMs) to provide efficient heat storage and release, thereby enhancing energy efficiency and underpinning a broad range of energy applications.

View Article and Find Full Text PDF

Electrospun poly(ε-caprolactone) (PCL)-based scaffolds are widely used in tissue engineering. However, low cell adhesion remains the key drawback of PCL scaffolds. It is well known that nitrogen-doped diamond-like carbon (N-DLC) coatings deposited on the surface of various implants are able to enhance their biocompatibility and functional properties.

View Article and Find Full Text PDF

Recent Advancements in CoO-Based Composites for Enhanced Electrocatalytic Water Splitting.

Micromachines (Basel)

November 2024

Department of Fiber System Engineering, Yeungnam University, 280 Dehak-Ro, Gyeongsan 38541, Republic of Korea.

The pursuit of efficient and economical catalysts for water splitting, a critical step in hydrogen production, has gained momentum with the increasing demand for sustainable energy. Among the various electrocatalysts developed to date, cobalt oxide (CoO) has emerged as a promising candidate owing to its availability, stability, and catalytic activity. However, intrinsic limitations, including low catalytic activity and poor electrical conductivity, often hinder its effectiveness in electrocatalytic water splitting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!