Imaging by a sub-wavelength metallic lens with large field of view.

Opt Express

State Key Laboratory of Optical Technologies for Microfabrication, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China.

Published: February 2008

The characteristics of the phase retardations and the invariability against the incident angles are investigated when light enters the rectangular holes with different sizes perforated on metallic film. A kind of metallic structure with a great potential in imaging is brought forward. The finite difference time domain (FDTD) method and the Rayleigh-Sommerfeld diffraction integrals are used to testify the imaging ability at different incident angles by examining the electric field on focal plane. The calculation results indicate that a quite large view of field lens can be achieved by increasing the number of the holes per unit area with the mentioned structure. A metallic structured lens with a 280 microm aperture and 240 microm focal length is designed and the view angle range of +/-15 degrees can be achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.16.002578DOI Listing

Publication Analysis

Top Keywords

incident angles
8
imaging sub-wavelength
4
metallic
4
sub-wavelength metallic
4
metallic lens
4
lens large
4
large field
4
field view
4
view characteristics
4
characteristics phase
4

Similar Publications

Objective: Soft tissue defects and postoperative wound healing complications related to calcaneus fractures may result in significant morbidity. The aim of this study was to investigate whether percutaneous minimally invasive screw internal fixation (PMISIF) can change this situation in the treatment of calcaneal fractures, and aimed to explore the mechanical effects of different internal fixation methods on Sanders type III calcaneal fractures through finite element analysis.

Methods: This retrospective analysis focused on 83 patients with Sanders II and III calcaneal fractures from March 2017 to March 2022.

View Article and Find Full Text PDF

Introduction: Global coronal alignment is mainly assessed by C7 plumbline and central sacral vertical line (CSVL), pelvic obliquity and shoulder alignment. A detailed analysis is mandatory when treating spinal deformity. It remains unclear to what extent mild scoliosis influences global coronal alignment.

View Article and Find Full Text PDF

Background: Orthodontic-orthognathic treatment is the standard of care for moderate and/or severe skeletal class III (SCIII) malocclusion. Following orthognathic surgery, morphological changes in the temporomandibular joint structures (TMJ) may contribute to condylar resorption (CR).

Objectives: This systematic review aimed to identify the morphological signs of condylar resorption (changes in the condylar head, position, neck, disk, and joint space) following orthognathic surgery in patients with SCIII compared with those with skeletal class II (SCII) malocclusion.

View Article and Find Full Text PDF

Background: The Hispanic/Latino population is not uniform. Prevalence and clinical outcomes of cardiac arrhythmias in ethnic background subgroups are variable, but the reasons for differences are unclear. Vectorcardiographic Global Electrical Heterogeneity (GEH) has been shown to be associated with adverse cardiovascular outcomes.

View Article and Find Full Text PDF

Purpose: The dynamic alignment of the lumbar spine, pelvis and femur is increasingly studied in hip preservation surgery. However, the interaction between lumbopelvic alignment, acetabular and femoral morphology and its influence on patients' preoperative symptom burden remains poorly understood. The aim of this study was to evaluate whether lumbopelvic malalignment affects osseous hip morphology and exacerbates preoperative patient-reported joint functionality in patients undergoing periacetabular osteotomy (PAO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!