The limiting effects of varying the thickness of a dielectric overlayer on planar double split-ring resonator (SRR) arrays are studied by terahertz time-domain spectroscopy. Uniform dielectric overlayers from 100 nm to 16 mum thick are deposited onto fixed SRR arrays in order to shift the resonance frequency of the electric response. We discuss the bounds of resonance shifting and emphasize the resulting limitations for SRR-based sensing. These results are presented in the context of typical biosensing situations and are compared to previous work and other existing sensing platforms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.16.001786 | DOI Listing |
The utilization of microwave radiation has gained increasing importance in various biological applications. However, a significant challenge remains in the interaction between the microwaves and the human skin, primarily due to the impedance mismatch. Recently, the employment of split-ring resonator (SRR) topologies has become increasingly prevalent for addressing such a problem.
View Article and Find Full Text PDFSensors (Basel)
September 2024
CINVESTAV-IPN, Telecommunications Section, Av. IPN 2508, San Pedro Zacatenco, Ciudad de México 07360, Mexico.
This article presents a symmetrical reduced-size eight-element MIMO antenna array with high electromagnetic isolation among radiators. The array utilizes easy-to-build techniques to cover the n77 and n78 new radio (NR) bands. It is based on an octagonal double-negative metamaterial split-ring resonator (SRR), which enables a size reduction of over 50% for the radiators compared to a conventional disc monopole antenna by increasing the slow-wave factor.
View Article and Find Full Text PDFSensors (Basel)
March 2024
ESAT-WaveCore Research Division, Department of Electrical Engineering, Katholieke Universiteit Leuven, 3001 Leuven, Belgium.
A metamaterial-inspired varactor-tuned antenna with frequency reconfigurability and pattern diversity is designed. Two different versions of a reconfigurable structure are integrated into a single antenna to excite two different orthogonal patterns, which realizes pattern diversity for MIMO applications. The outer annular Composite Right-/Left-Handed Transmission Line (CRLH-TL) works at the 1 mode and provides a broadside pattern, and the inner circular radiator loaded with split ring resonators (SRR) operates at the 0 mode and radiates an omnidirectional pattern, which realizes pattern diversity.
View Article and Find Full Text PDFSensors (Basel)
December 2023
College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China.
In this article, a miniature eight-port multiple-input multiple-output (MIMO) antenna array is proposed for fifth-generation (5G) sub-6 GHz handset applications. The individual antenna element comprises a radiator shaped like the Chinese character "" (phonetically represented as "Wang") and three split-ring resonators (SRR) on the metal frame. The size of the individual antenna element is only 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!