Maintaining a balance between self-renewal and differentiation in neural progenitor cells during development is important to ensure that correct numbers of neural cells are generated. We report that the ephrin-B-PDZ-RGS3 signaling pathway functions to regulate this balance in the developing mammalian cerebral cortex. During cortical neurogenesis, expression of ephrin-B1 and PDZ-RGS3 is specifically seen in progenitor cells and is turned off at the onset of neuronal differentiation. Persistent expression of ephrin-B1 and PDZ-RGS3 prevents differentiation of neural progenitor cells. Blocking RGS-mediated ephrin-B1 signaling in progenitor cells through RNA interference or expression of dominant-negative mutants results in differentiation. Genetic knockout of ephrin-B1 causes early cell cycle exit and leads to a concomitant loss of neural progenitor cells. Our results indicate that ephrin-B function is critical for the maintenance of the neural progenitor cell state and that this role of ephrin-B is mediated by PDZ-RGS3, likely via interacting with the noncanonical G protein signaling pathway, which is essential in neural progenitor asymmetrical cell division.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2426945PMC
http://dx.doi.org/10.1083/jcb.200708091DOI Listing

Publication Analysis

Top Keywords

neural progenitor
24
progenitor cells
20
progenitor
8
progenitor cell
8
cell state
8
differentiation neural
8
signaling pathway
8
expression ephrin-b1
8
ephrin-b1 pdz-rgs3
8
neural
6

Similar Publications

Accurate normalization in miRNA studies requires the use of appropriate endogenous controls, which can vary significantly depending on cell types, treatments, and physiological or pathological conditions. This study aimed to identify suitable endogenous miRNA controls for neural progenitor cells (NPCs) and hippocampal tissues, both of which play crucial roles in neurogenesis. Using small RNA sequencing, we identified the most stable miRNAs in primary mouse NPCs and hippocampal tissues and accessed their stability using NormFinder analysis.

View Article and Find Full Text PDF

Transfer RNA Levels Are Tuned to Support Differentiation During Drosophila Neurogenesis.

Genes (Basel)

December 2024

Quantitative and Systems Biology Graduate Program, Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA.

Background/objectives: Neural differentiation requires a multifaceted program to alter gene expression along the proliferation to the differentiation axis. While critical changes occur at the level of transcription, post-transcriptional mechanisms allow fine-tuning of protein output. We investigated the role of tRNAs in regulating gene expression during neural differentiation in larval brains.

View Article and Find Full Text PDF

Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social interaction and communication, along with restricted and repetitive behaviors. Both genetic and environmental factors contribute to ASD, with prenatal exposure to valproic acid (VPA) and nicotine being linked to increased risk. Impaired adult hippocampal neurogenesis, particularly in the ventral region, is thought to play a role in the social deficits observed in ASD.

View Article and Find Full Text PDF

De-regulated protein expression contributes to tumor growth and progression in medulloblastoma (MB), the most common malignant brain tumor in children. MB is associated with impaired differentiation of specific neural progenitors, suggesting that the deregulation of proteins involved in neural physiology could contribute to the transformed phenotype in MB. Calsynthenin 1 (CLSTN1) is a neuronal protein involved in cell-cell interaction, vesicle trafficking, and synaptic signaling.

View Article and Find Full Text PDF

Foxm1 promotes differentiation of neural progenitors in the zebrafish inner ear.

Dev Biol

January 2025

Biology Department, Texas A&M University, College Station, TX 7843-3258. Electronic address:

During development of the vertebrate inner ear, sensory epithelia and neurons of the statoacoustic ganglion (SAG) arise from lineage-restricted progenitors that proliferate extensively before differentiating into mature post-mitotic cell types. Development of progenitors is regulated by Fgf, Wnt and Notch signaling, but how these pathways are coordinated to achieve an optimal balance of proliferation and differentiation is not well understood. Here we investigate the role in zebrafish of Foxm1, a transcription factor commonly associated with proliferation in developing tissues and tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!